NAME
mount - mount a filesystem
SYNOPSIS
mount [-lhV]
mount -a [-fFnrsvw] [-t vfstype] [-O optlist]
mount [-fnrsvw] [-o option[,option]...] device|dir
mount [-fnrsvw] [-t vfstype] [-o options] device dir
DESCRIPTION
All files accessible in a Unix system are arranged in one big tree, the
file hierarchy, rooted at /. These files can be spread out over
several devices. The mount command serves to attach the filesystem
found on some device to the big file tree. Conversely, the umount(8)
command will detach it again.
The standard form of the mount command, is
mount -t type device dir
This tells the kernel to attach the filesystem found on device (which
is of type type) at the directory dir. The previous contents (if any)
and owner and mode of dir become invisible, and as long as this
filesystem remains mounted, the pathname dir refers to the root of the
filesystem on device.
The listing and help.
Three forms of invocation do not actually mount anything:
mount -h
prints a help message
mount -V
prints a version string
mount [-l] [-t type]
lists all mounted filesystems (of type type). The option
-l adds the labels in this listing. See below.
The bind mounts.
Since Linux 2.4.0 it is possible to remount part of the file
hierarchy somewhere else. The call is
mount --bind olddir newdir
or shortoption
mount -B olddir newdir
or fstab entry is:
/olddir /newdir none bind
After this call the same contents is accessible in two places.
One can also remount a single file (on a single file).
This call attaches only (part of) a single filesystem, not
possible submounts. The entire file hierarchy including
submounts is attached a second place using
mount --rbind olddir newdir
or shortoption
mount -R olddir newdir
Note that the filesystem mount options will remain the same as
those on the original mount point, and cannot be changed by
passing the -o option along with --bind/--rbind.
The move operation.
Since Linux 2.5.1 it is possible to atomically move a mounted
tree to another place. The call is
mount --move olddir newdir
or shortoption
mount -M olddir newdir
The shared subtrees operations.
Since Linux 2.6.15 it is possible to mark a mount and its
submounts as shared, private, slave or unbindable. A shared
mount provides ability to create mirrors of that mount such that
mounts and umounts within any of the mirrors propagate to the
other mirror. A slave mount receives propagation from its
master, but any not vice-versa. A private mount carries no
propagation abilities. A unbindable mount is a private mount
which cannot cloned through a bind operation. Detailed semantics
is documented in Documentation/sharedsubtree.txt file in the
kernel source tree.
mount --make-shared mountpoint
mount --make-slave mountpoint
mount --make-private mountpoint
mount --make-unbindable mountpoint
The following commands allows one to recursively change the type
of all the mounts under a given mountpoint.
mount --make-rshared mountpoint
mount --make-rslave mountpoint
mount --make-rprivate mountpoint
mount --make-runbindable mountpoint
The device indication.
Most devices are indicated by a file name (of a block special
device), like /dev/sda1, but there are other possibilities. For
example, in the case of an NFS mount, device may look like
knuth.cwi.nl:/dir. It is possible to indicate a block special
device using its volume LABEL or UUID (see the -L and -U options
below).
The proc filesystem is not associated with a special device, and
when mounting it, an arbitrary keyword, such as proc can be used
instead of a device specification. (The customary choice none
is less fortunate: the error message ‘none busy’ from umount can
be confusing.)
The /etc/fstab, /etc/mtab and /proc/mounts files.
The file /etc/fstab (see fstab(5)), may contain lines describing
what devices are usually mounted where, using which options.
The command
mount -a [-t type] [-O optlist]
(usually given in a bootscript) causes all filesystems mentioned
in fstab (of the proper type and/or having or not having the
proper options) to be mounted as indicated, except for those
whose line contains the noauto keyword. Adding the -F option
will make mount fork, so that the filesystems are mounted
simultaneously.
When mounting a filesystem mentioned in fstab or mtab, it
suffices to give only the device, or only the mount point.
The programs mount and umount maintain a list of currently
mounted filesystems in the file /etc/mtab. If no arguments are
given to mount, this list is printed.
When the proc filesystem is mounted (say at /proc), the files
/etc/mtab and /proc/mounts have very similar contents. The
former has somewhat more information, such as the mount options
used, but is not necessarily up-to-date (cf. the -n option
below). It is possible to replace /etc/mtab by a symbolic link
to /proc/mounts, and especially when you have very large numbers
of mounts things will be much faster with that symlink, but some
information is lost that way, and in particular working with the
loop device will be less convenient, and using the "user" option
will fail.
The non-superuser mounts.
Normally, only the superuser can mount filesystems. However,
when fstab contains the user option on a line, anybody can mount
the corresponding system.
Thus, given a line
/dev/cdrom /cd iso9660 ro,user,noauto,unhide
any user can mount the iso9660 filesystem found on his CDROM
using the command
mount /dev/cdrom
or
mount /cd
For more details, see fstab(5). Only the user that mounted a
filesystem can unmount it again. If any user should be able to
unmount, then use users instead of user in the fstab line. The
owner option is similar to the user option, with the restriction
that the user must be the owner of the special file. This may be
useful e.g. for /dev/fd if a login script makes the console user
owner of this device. The group option is similar, with the
restriction that the user must be member of the group of the
special file.
COMMAND LINE OPTIONS
The full set of mount options used by an invocation of mount is
determined by first extracting the mount options for the filesystem
from the fstab table, then applying any options specified by the -o
argument, and finally applying a -r or -w option, when present.
Command line options available for the mount command:
-V Output version.
-h Print a help message.
-v Verbose mode.
-p passwdfd
If the mount requires a passphrase to be entered, read it from
file descriptor passwdfd instead of from the terminal. If mount
uses encrypted loop device and gpgkey= mount option is not being
used (no gpg key file), then mount attempts to read 65 keys from
passwdfd, each key at least 20 characters and separated by
newline. If mount successfully reads 64 or 65 keys, then loop
device is put to multi-key mode. If mount encounters end-of-file
before 64 keys are read, then only first key is used in single-
key mode.
-a Mount all filesystems (of the given types) mentioned in fstab.
-F (Used in conjunction with -a.) Fork off a new incarnation of
mount for each device. This will do the mounts on different
devices or different NFS servers in parallel. This has the
advantage that it is faster; also NFS timeouts go in parallel. A
disadvantage is that the mounts are done in undefined order.
Thus, you cannot use this option if you want to mount both /usr
and /usr/spool.
-f Causes everything to be done except for the actual system call;
if it’s not obvious, this ‘‘fakes’’ mounting the filesystem.
This option is useful in conjunction with the -v flag to
determine what the mount command is trying to do. It can also be
used to add entries for devices that were mounted earlier with
the -n option. The -f option checks for existing record in
/etc/mtab and fails when the record already exists (with regular
non-fake mount, this check is done by kernel).
-i Don’t call the /sbin/mount.<filesystem> helper even if it
exists.
-l Add the labels in the mount output. Mount must have permission
to read the disk device (e.g. be suid root) for this to work.
One can set such a label for ext2, ext3 or ext4 using the
e2label(8) utility, or for XFS using xfs_admin(8), or for
reiserfs using reiserfstune(8).
-n Mount without writing in /etc/mtab. This is necessary for
example when /etc is on a read-only filesystem.
-s Tolerate sloppy mount options rather than failing. This will
ignore mount options not supported by a filesystem type. Not all
filesystems support this option. This option exists for support
of the Linux autofs-based automounter.
-r Mount the filesystem read-only. A synonym is -o ro.
Note that, depending on the filesystem type, state and kernel
behavior, the system may still write to the device. For example,
Ext3 or ext4 will replay its journal if the filesystem is dirty.
To prevent this kind of write access, you may want to mount ext3
or ext4 filesystem with "ro,noload" mount options or set the
block device to read-only mode, see command blockdev(8).
-w Mount the filesystem read/write. This is the default. A synonym
is -o rw.
-L label
Mount the partition that has the specified label.
-U uuid
Mount the partition that has the specified uuid. These two
options require the file /proc/partitions (present since Linux
2.1.116) to exist.
-t vfstype
The argument following the -t is used to indicate the filesystem
type. The filesystem types which are currently supported
include: adfs, affs, autofs, cifs, coda, coherent, cramfs,
debugfs, devpts, efs, ext, ext2, ext3, ext4, hfs, hfsplus, hpfs,
iso9660, jfs, minix, msdos, ncpfs, nfs, nfs4, ntfs, proc, qnx4,
ramfs, reiserfs, romfs, smbfs, sysv, tmpfs, udf, ufs, umsdos,
usbfs, vfat, xenix, xfs, xiafs. Note that coherent, sysv and
xenix are equivalent and that xenix and coherent will be removed
at some point in the future — use sysv instead. Since kernel
version 2.1.21 the types ext and xiafs do not exist anymore.
Earlier, usbfs was known as usbdevfs. Note, the real list of
all supported filesystems depends on your kernel.
For most types all the mount program has to do is issue a simple
mount(2) system call, and no detailed knowledge of the
filesystem type is required. For a few types however (like nfs,
nfs4, cifs, smbfs, ncpfs) ad hoc code is necessary. The nfs,
nfs4, cifs, smbfs, and ncpfs filesystems have a separate mount
program. In order to make it possible to treat all types in a
uniform way, mount will execute the program /sbin/mount.TYPE (if
that exists) when called with type TYPE. Since various versions
of the smbmount program have different calling conventions,
/sbin/mount.smbfs may have to be a shell script that sets up the
desired call.
If no -t option is given, or if the auto type is specified,
mount will try to guess the desired type. Mount uses the blkid
or volume_id library for guessing the filesystem type; if that
does not turn up anything that looks familiar, mount will try to
read the file /etc/filesystems, or, if that does not exist,
/proc/filesystems. All of the filesystem types listed there
will be tried, except for those that are labeled "nodev" (e.g.,
devpts, proc and nfs). If /etc/filesystems ends in a line with
a single * only, mount will read /proc/filesystems afterwards.
The auto type may be useful for user-mounted floppies. Creating
a file /etc/filesystems can be useful to change the probe order
(e.g., to try vfat before msdos or ext3 before ext2) or if you
use a kernel module autoloader. Warning: the probing uses a
heuristic (the presence of appropriate ‘magic’), and could
recognize the wrong filesystem type, possibly with catastrophic
consequences. If your data is valuable, don’t ask mount to
guess.
More than one type may be specified in a comma separated list.
The list of filesystem types can be prefixed with no to specify
the filesystem types on which no action should be taken. (This
can be meaningful with the -a option.)
For example, the command:
mount -a -t nomsdos,ext
mounts all filesystems except those of type msdos and ext.
-O Used in conjunction with -a, to limit the set of filesystems to
which the -a is applied. Like -t in this regard except that it
is useless except in the context of -a. For example, the
command:
mount -a -O no_netdev
mounts all filesystems except those which have the option
_netdev specified in the options field in the /etc/fstab file.
It is different from -t in that each option is matched exactly;
a leading no at the beginning of one option does not negate the
rest.
The -t and -O options are cumulative in effect; that is, the
command
mount -a -t ext2 -O _netdev
mounts all ext2 filesystems with the _netdev option, not all
filesystems that are either ext2 or have the _netdev option
specified.
-o Options are specified with a -o flag followed by a comma
separated string of options. For example:
mount LABEL=mydisk -o noatime,nouser
For more details, see FILESYSTEM INDEPENDENT MOUNT OPTIONS and
FILESYSTEM SPECIFIC MOUNT OPTIONS sections.
-B, --bind
Remount a subtree somewhere else (so that its contents are
available in both places). See above.
-R, --rbind
Remount a subtree and all possible submounts somewhere else (so
that its contents are available in both places). See above.
-M, --move
Move a subtree to some other place. See above.
FILESYSTEM INDEPENDENT MOUNT OPTIONS
Some of these options are only useful when they appear in the
/etc/fstab file.
Some of these options could be enabled or disabled by default in the
system kernel. To check the current setting see the options in
/proc/mounts.
The following options apply to any filesystem that is being mounted
(but not every filesystem actually honors them - e.g., the sync option
today has effect only for ext2, ext3, fat, vfat and ufs):
async All I/O to the filesystem should be done asynchronously. (See
also the sync option.)
atime Update inode access time for each access. See also the
strictatime mount option.
noatime
Do not update inode access times on this filesystem (e.g, for
faster access on the news spool to speed up news servers).
auto Can be mounted with the -a option.
noauto Can only be mounted explicitly (i.e., the -a option will not
cause the filesystem to be mounted).
context=context, fscontext=context, defcontext=context and
rootcontext=context
The context= option is useful when mounting filesystems that do
not support extended attributes, such as a floppy or hard disk
formatted with VFAT, or systems that are not normally running
under SELinux, such as an ext3 formatted disk from a non-SELinux
workstation. You can also use context= on filesystems you do not
trust, such as a floppy. It also helps in compatibility with
xattr-supporting filesystems on earlier 2.4.<x> kernel versions.
Even where xattrs are supported, you can save time not having to
label every file by assigning the entire disk one security
context.
A commonly used option for removable media is
context=system_u:object_r:removable_t.
Two other options are fscontext= and defcontext=, both of which
are mutually exclusive of the context option. This means you can
use fscontext and defcontext with each other, but neither can be
used with context.
The fscontext= option works for all filesystems, regardless of
their xattr support. The fscontext option sets the overarching
filesystem label to a specific security context. This filesystem
label is separate from the individual labels on the files. It
represents the entire filesystem for certain kinds of permission
checks, such as during mount or file creation. Individual file
labels are still obtained from the xattrs on the files
themselves. The context option actually sets the aggregate
context that fscontext provides, in addition to supplying the
same label for individual files.
You can set the default security context for unlabeled files
using defcontext= option. This overrides the value set for
unlabeled files in the policy and requires a filesystem that
supports xattr labeling.
The rootcontext= option allows you to explicitly label the root
inode of a FS being mounted before that FS or inode because
visable to userspace. This was found to be useful for things
like stateless linux.
For more details, see selinux(8)
defaults
Use default options: rw, suid, dev, exec, auto, nouser, and
async.
dev Interpret character or block special devices on the filesystem.
nodev Do not interpret character or block special devices on the file
system.
diratime
Update directory inode access times on this filesystem. This is
the default.
nodiratime
Do not update directory inode access times on this filesystem.
dirsync
All directory updates within the filesystem should be done
synchronously. This affects the following system calls: creat,
link, unlink, symlink, mkdir, rmdir, mknod and rename.
exec Permit execution of binaries.
noexec Do not allow direct execution of any binaries on the mounted
filesystem. (Until recently it was possible to run binaries
anyway using a command like /lib/ld*.so /mnt/binary. This trick
fails since Linux 2.4.25 / 2.6.0.)
group Allow an ordinary (i.e., non-root) user to mount the filesystem
if one of his groups matches the group of the device. This
option implies the options nosuid and nodev (unless overridden
by subsequent options, as in the option line group,dev,suid).
iversion
Every time the inode is modified, the i_version field will be
incremented.
noiversion
Do not increment the i_version inode field.
mand Allow mandatory locks on this filesystem. See fcntl(2).
nomand Do not allow mandatory locks on this filesystem.
_netdev
The filesystem resides on a device that requires network access
(used to prevent the system from attempting to mount these
filesystems until the network has been enabled on the system).
nofail Do not report errors for this device if it does not exist.
relatime
Update inode access times relative to modify or change time.
Access time is only updated if the previous access time was
earlier than the current modify or change time. (Similar to
noatime, but doesn’t break mutt or other applications that need
to know if a file has been read since the last time it was
modified.)
norelatime
Do not use relatime feature. See also the strictatime mount
option.
strictatime
Allows to explicitly requesting full atime updates. This makes
it possible for kernel to defaults to relatime or noatime but
still allow userspace to override it. For more details about the
default system mount options see /proc/mounts.
nostrictatime
Use the kernel’s default behaviour for inode access time
updates.
suid Allow set-user-identifier or set-group-identifier bits to take
effect.
nosuid Do not allow set-user-identifier or set-group-identifier bits to
take effect. (This seems safe, but is in fact rather unsafe if
you have suidperl(1) installed.)
owner Allow an ordinary (i.e., non-root) user to mount the filesystem
if he is the owner of the device. This option implies the
options nosuid and nodev (unless overridden by subsequent
options, as in the option line owner,dev,suid).
remount
Attempt to remount an already-mounted filesystem. This is
commonly used to change the mount flags for a filesystem,
especially to make a readonly filesystem writeable. It does not
change device or mount point.
The remount functionality follows the standard way how the mount
command works with options from fstab. It means the mount
command doesn’t read fstab (or mtab) only when a device and dir
are fully specified.
mount -o remount,rw /dev/foo /dir
After this call all old mount options are replaced and arbitrary
stuff from fstab is ignored, except the loop= option which is
internally generated and maintained by the mount command.
mount -o remount,rw /dir
After this call mount reads fstab (or mtab) and merges these
options with options from command line ( -o ).
ro Mount the filesystem read-only.
rw Mount the filesystem read-write.
sync All I/O to the filesystem should be done synchronously. In case
of media with limited number of write cycles (e.g. some flash
drives) "sync" may cause life-cycle shortening.
user Allow an ordinary user to mount the filesystem. The name of the
mounting user is written to mtab so that he can unmount the
filesystem again. This option implies the options noexec,
nosuid, and nodev (unless overridden by subsequent options, as
in the option line user,exec,dev,suid).
nouser Forbid an ordinary (i.e., non-root) user to mount the
filesystem. This is the default.
users Allow every user to mount and unmount the filesystem. This
option implies the options noexec, nosuid, and nodev (unless
overridden by subsequent options, as in the option line
users,exec,dev,suid).
FILESYSTEM SPECIFIC MOUNT OPTIONS
The following options apply only to certain filesystems. We sort them
by filesystem. They all follow the -o flag.
What options are supported depends a bit on the running kernel. More
info may be found in the kernel source subdirectory
Documentation/filesystems.
Mount options for adfs
uid=value and gid=value
Set the owner and group of the files in the filesystem (default:
uid=gid=0).
ownmask=value and othmask=value
Set the permission mask for ADFS ’owner’ permissions and ’other’
permissions, respectively (default: 0700 and 0077,
respectively). See also
/usr/src/linux/Documentation/filesystems/adfs.txt.
Mount options for affs
uid=value and gid=value
Set the owner and group of the root of the filesystem (default:
uid=gid=0, but with option uid or gid without specified value,
the uid and gid of the current process are taken).
setuid=value and setgid=value
Set the owner and group of all files.
mode=value
Set the mode of all files to value & 0777 disregarding the
original permissions. Add search permission to directories that
have read permission. The value is given in octal.
protect
Do not allow any changes to the protection bits on the
filesystem.
usemp Set uid and gid of the root of the filesystem to the uid and gid
of the mount point upon the first sync or umount, and then clear
this option. Strange...
verbose
Print an informational message for each successful mount.
prefix=string
Prefix used before volume name, when following a link.
volume=string
Prefix (of length at most 30) used before ’/’ when following a
symbolic link.
reserved=value
(Default: 2.) Number of unused blocks at the start of the
device.
root=value
Give explicitly the location of the root block.
bs=value
Give blocksize. Allowed values are 512, 1024, 2048, 4096.
grpquota|noquota|quota|usrquota
These options are accepted but ignored. (However, quota
utilities may react to such strings in /etc/fstab.)
Mount options for cifs
See the options section of the mount.cifs(8) man page (cifs-mount
package must be installed).
Mount options for coherent
None.
Mount options for debugfs
The debugfs filesystem is a pseudo filesystem, traditionally mounted on
/sys/kernel/debug. There are no mount options.
Mount options for devpts
The devpts filesystem is a pseudo filesystem, traditionally mounted on
/dev/pts. In order to acquire a pseudo terminal, a process opens
/dev/ptmx; the number of the pseudo terminal is then made available to
the process and the pseudo terminal slave can be accessed as
/dev/pts/<number>.
uid=value and gid=value
This sets the owner or the group of newly created PTYs to the
specified values. When nothing is specified, they will be set to
the UID and GID of the creating process. For example, if there
is a tty group with GID 5, then gid=5 will cause newly created
PTYs to belong to the tty group.
mode=value
Set the mode of newly created PTYs to the specified value. The
default is 0600. A value of mode=620 and gid=5 makes "mesg y"
the default on newly created PTYs.
newinstance
Create a private instance of devpts filesystem, such that
indices of ptys allocated in this new instance are independent
of indices created in other instances of devpts.
All mounts of devpts without this newinstance option share the
same set of pty indices (i.e legacy mode). Each mount of devpts
with the newinstance option has a private set of pty indices.
This option is mainly used to support containers in the linux
kernel. It is implemented in linux kernel versions starting with
2.6.29. Further, this mount option is valid only if
CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel
configuration.
To use this option effectively, /dev/ptmx must be a symbolic
link to pts/ptmx. See Documentation/filesystems/devpts.txt in
the linux kernel source tree for details.
ptmxmode=value
Set the mode for the new ptmx device node in the devpts
filesystem.
With the support for multiple instances of devpts (see
newinstance option above), each instance has a private ptmx node
in the root of the devpts filesystem (typically /dev/pts/ptmx).
For compatibility with older versions of the kernel, the default
mode of the new ptmx node is 0000. ptmxmode=value specifies a
more useful mode for the ptmx node and is highly recommended
when the newinstance option is specified.
This option is only implemented in linux kernel versions
starting with 2.6.29. Further this option is valid only if
CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel
configuration.
Mount options for ext
None. Note that the ‘ext’ filesystem is obsolete. Don’t use it. Since
Linux version 2.1.21 extfs is no longer part of the kernel source.
Mount options for ext2
The ‘ext2’ filesystem is the standard Linux filesystem. Since Linux
2.5.46, for most mount options the default is determined by the
filesystem superblock. Set them with tune2fs(8).
acl|noacl
Support POSIX Access Control Lists (or not).
bsddf|minixdf
Set the behaviour for the statfs system call. The minixdf
behaviour is to return in the f_blocks field the total number of
blocks of the filesystem, while the bsddf behaviour (which is
the default) is to subtract the overhead blocks used by the ext2
filesystem and not available for file storage. Thus
% mount /k -o minixdf; df /k; umount /k
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/sda6 2630655 86954 2412169 3% /k
% mount /k -o bsddf; df /k; umount /k
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/sda6 2543714 13 2412169 0% /k
(Note that this example shows that one can add command line
options to the options given in /etc/fstab.)
check={none|nocheck}
No checking is done at mount time. This is the default. This is
fast. It is wise to invoke e2fsck(8) every now and then, e.g.
at boot time.
debug Print debugging info upon each (re)mount.
errors={continue|remount-ro|panic}
Define the behaviour when an error is encountered. (Either
ignore errors and just mark the filesystem erroneous and
continue, or remount the filesystem read-only, or panic and halt
the system.) The default is set in the filesystem superblock,
and can be changed using tune2fs(8).
grpid|bsdgroups and nogrpid|sysvgroups
These options define what group id a newly created file gets.
When grpid is set, it takes the group id of the directory in
which it is created; otherwise (the default) it takes the fsgid
of the current process, unless the directory has the setgid bit
set, in which case it takes the gid from the parent directory,
and also gets the setgid bit set if it is a directory itself.
grpquota|noquota|quota|usrquota
These options are accepted but ignored.
nobh Do not attach buffer_heads to file pagecache. (Since 2.5.49.)
nouid32
Disables 32-bit UIDs and GIDs. This is for interoperability
with older kernels which only store and expect 16-bit values.
oldalloc or orlov
Use old allocator or Orlov allocator for new inodes. Orlov is
default.
resgid=n and resuid=n
The ext2 filesystem reserves a certain percentage of the
available space (by default 5%, see mke2fs(8) and tune2fs(8)).
These options determine who can use the reserved blocks.
(Roughly: whoever has the specified uid, or belongs to the
specified group.)
sb=n Instead of block 1, use block n as superblock. This could be
useful when the filesystem has been damaged. (Earlier, copies
of the superblock would be made every 8192 blocks: in block 1,
8193, 16385, ... (and one got thousands of copies on a big
filesystem). Since version 1.08, mke2fs has a -s (sparse
superblock) option to reduce the number of backup superblocks,
and since version 1.15 this is the default. Note that this may
mean that ext2 filesystems created by a recent mke2fs cannot be
mounted r/w under Linux 2.0.*.) The block number here uses 1k
units. Thus, if you want to use logical block 32768 on a
filesystem with 4k blocks, use "sb=131072".
user_xattr|nouser_xattr
Support "user." extended attributes (or not).
Mount options for ext3
The ext3 filesystem is a version of the ext2 filesystem which has been
enhanced with journalling. It supports the same options as ext2 as
well as the following additions:
journal=update
Update the ext3 filesystem’s journal to the current format.
journal=inum
When a journal already exists, this option is ignored.
Otherwise, it specifies the number of the inode which will
represent the ext3 filesystem’s journal file; ext3 will create
a new journal, overwriting the old contents of the file whose
inode number is inum.
noload Do not load the ext3 filesystem’s journal on mounting.
data={journal|ordered|writeback}
Specifies the journalling mode for file data. Metadata is
always journaled. To use modes other than ordered on the root
filesystem, pass the mode to the kernel as boot parameter, e.g.
rootflags=data=journal.
journal
All data is committed into the journal prior to being
written into the main filesystem.
ordered
This is the default mode. All data is forced directly
out to the main file system prior to its metadata being
committed to the journal.
writeback
Data ordering is not preserved - data may be written into
the main filesystem after its metadata has been committed
to the journal. This is rumoured to be the highest-
throughput option. It guarantees internal filesystem
integrity, however it can allow old data to appear in
files after a crash and journal recovery.
barrier=0 / barrier=1
This enables/disables barriers. barrier=0 disables it,
barrier=1 enables it. The ext3 filesystem does not enable write
barriers by default.
commit=nrsec
Sync all data and metadata every nrsec seconds. The default
value is 5 seconds. Zero means default.
user_xattr
Enable Extended User Attributes. See the attr(5) manual page.
acl Enable POSIX Access Control Lists. See the acl(5) manual page.
Mount options for ext4
The ext4 filesystem is an an advanced level of the ext3 filesystem
which incorporates scalability and reliability enhancements for
supporting large filesystem.
The options journal_dev, noload, data, commit, orlov, oldalloc,
[no]user_xattr [no]acl, bsddf, minixdf, debug, errors, data_err, grpid,
bsdgroups, nogrpid sysvgroups, resgid, resuid, sb, quota, noquota,
grpquota, usrquota and [no]bh are backwardly compatible with ext3 or
ext2.
journal_checksum
Enable checksumming of the journal transactions. This will
allow the recovery code in e2fsck and the kernel to detect
corruption in the kernel. It is a compatible change and will be
ignored by older kernels.
journal_async_commit
Commit block can be written to disk without waiting for
descriptor blocks. If enabled older kernels cannot mount the
device. This will enable
journal=update
Update the ext4 filesystem’s journal to the current format.
barrier=0 / barrier=1 / barrier / nobarrier
This enables/disables the use of write barriers in the jbd code.
barrier=0 disables, barrier=1 enables. This also requires an IO
stack which can support barriers, and if jbd gets an error on a
barrier write, it will disable again with a warning. Write
barriers enforce proper on-disk ordering of journal commits,
making volatile disk write caches safe to use, at some
performance penalty. If your disks are battery-backed in one
way or another, disabling barriers may safely improve
performance. The mount options "barrier" and "nobarrier" can
also be used to enable or disable barriers, for consistency with
other ext4 mount options.
The ext4 filesystem enables write barriers by default.
inode_readahead=n
This tuning parameter controls the maximum number of inode table
blocks that ext4’s inode table readahead algorithm will pre-read
into the buffer cache. The default value is 32 blocks.
stripe=n
Number of filesystem blocks that mballoc will try to use for
allocation size and alignment. For RAID5/6 systems this should
be the number of data disks * RAID chunk size in filesystem
blocks.
delalloc
Deferring block allocation until write-out time.
nodelalloc
Disable delayed allocation. Blocks are allocation when data is
copied from user to page cache.
max_batch_time=usec
Maximum amount of time ext4 should wait for additional
filesystem operations to be batch together with a synchronous
write operation. Since a synchronous write operation is going to
force a commit and then a wait for the I/O complete, it doesn’t
cost much, and can be a huge throughput win, we wait for a small
amount of time to see if any other transactions can piggyback on
the synchronous write. The algorithm used is designed to
automatically tune for the speed of the disk, by measuring the
amount of time (on average) that it takes to finish committing a
transaction. Call this time the "commit time". If the time that
the transactoin has been running is less than the commit time,
ext4 will try sleeping for the commit time to see if other
operations will join the transaction. The commit time is capped
by the max_batch_time, which defaults to 15000us (15ms). This
optimization can be turned off entirely by setting
max_batch_time to 0.
min_batch_time=usec
This parameter sets the commit time (as described above) to be
at least min_batch_time. It defaults to zero microseconds.
Increasing this parameter may improve the throughput of multi-
threaded, synchronous workloads on very fast disks, at the cost
of increasing latency.
journal_ioprio=prio
The I/O priority (from 0 to 7, where 0 is the highest priorty)
which should be used for I/O operations submitted by kjournald2
during a commit operation. This defaults to 3, which is a
slightly higher priority than the default I/O priority.
auto_da_alloc|noauto_da_alloc
Many broken applications don’t use fsync() when noauto_da_alloc
replacing existing files via patterns such as
fd = open("foo.new")/write(fd,..)/close(fd)/ rename("foo.new",
"foo")
or worse yet
fd = open("foo", O_TRUNC)/write(fd,..)/close(fd).
If auto_da_alloc is enabled, ext4 will detect the replace-via-
rename and replace-via-truncate patterns and force that any
delayed allocation blocks are allocated such that at the next
journal commit, in the default data=ordered mode, the data
blocks of the new file are forced to disk before the rename()
operation is commited. This provides roughly the same level of
guarantees as ext3, and avoids the "zero-length" problem that
can happen when a system crashes before the delayed allocation
blocks are forced to disk.
Mount options for fat
(Note: fat is not a separate filesystem, but a common part of the
msdos, umsdos and vfat filesystems.)
blocksize={512|1024|2048}
Set blocksize (default 512). This option is obsolete.
uid=value and gid=value
Set the owner and group of all files. (Default: the uid and gid
of the current process.)
umask=value
Set the umask (the bitmask of the permissions that are not
present). The default is the umask of the current process. The
value is given in octal.
dmask=value
Set the umask applied to directories only. The default is the
umask of the current process. The value is given in octal.
fmask=value
Set the umask applied to regular files only. The default is the
umask of the current process. The value is given in octal.
allow_utime=value
This option controls the permission check of mtime/atime.
20 If current process is in group of file’s group ID, you
can change timestamp.
2 Other users can change timestamp.
The default is set from ‘dmask’ option. (If the directory is
writable, utime(2) is also allowed. I.e. ~dmask & 022)
Normally utime(2) checks current process is owner of the file,
or it has CAP_FOWNER capability. But FAT filesystem doesn’t
have uid/gid on disk, so normal check is too unflexible. With
this option you can relax it.
check=value
Three different levels of pickyness can be chosen:
r[elaxed]
Upper and lower case are accepted and equivalent, long
name parts are truncated (e.g. verylongname.foobar
becomes verylong.foo), leading and embedded spaces are
accepted in each name part (name and extension).
n[ormal]
Like "relaxed", but many special characters (*, ?, <,
spaces, etc.) are rejected. This is the default.
s[trict]
Like "normal", but names may not contain long parts and
special characters that are sometimes used on Linux, but
are not accepted by MS-DOS are rejected. (+, =, spaces,
etc.)
codepage=value
Sets the codepage for converting to shortname characters on FAT
and VFAT filesystems. By default, codepage 437 is used.
conv={b[inary]|t[ext]|a[uto]}
The fat filesystem can perform CRLF<-->NL (MS-DOS text format to
UNIX text format) conversion in the kernel. The following
conversion modes are available:
binary no translation is performed. This is the default.
text CRLF<-->NL translation is performed on all files.
auto CRLF<-->NL translation is performed on all files that
don’t have a "well-known binary" extension. The list of
known extensions can be found at the beginning of
fs/fat/misc.c (as of 2.0, the list is: exe, com, bin,
app, sys, drv, ovl, ovr, obj, lib, dll, pif, arc, zip,
lha, lzh, zoo, tar, z, arj, tz, taz, tzp, tpz, gz, tgz,
deb, gif, bmp, tif, gl, jpg, pcx, tfm, vf, gf, pk, pxl,
dvi).
Programs that do computed lseeks won’t like in-kernel text
conversion. Several people have had their data ruined by this
translation. Beware!
For filesystems mounted in binary mode, a conversion tool
(fromdos/todos) is available. This option is obsolete.
cvf_format=module
Forces the driver to use the CVF (Compressed Volume File) module
cvf_module instead of auto-detection. If the kernel supports
kmod, the cvf_format=xxx option also controls on-demand CVF
module loading. This option is obsolete.
cvf_option=option
Option passed to the CVF module. This option is obsolete.
debug Turn on the debug flag. A version string and a list of
filesystem parameters will be printed (these data are also
printed if the parameters appear to be inconsistent).
fat={12|16|32}
Specify a 12, 16 or 32 bit fat. This overrides the automatic
FAT type detection routine. Use with caution!
iocharset=value
Character set to use for converting between 8 bit characters and
16 bit Unicode characters. The default is iso8859-1. Long
filenames are stored on disk in Unicode format.
tz=UTC This option disables the conversion of timestamps between local
time (as used by Windows on FAT) and UTC (which Linux uses
internally). This is particuluarly useful when mounting devices
(like digital cameras) that are set to UTC in order to avoid the
pitfalls of local time.
quiet Turn on the quiet flag. Attempts to chown or chmod files do not
return errors, although they fail. Use with caution!
showexec
If set, the execute permission bits of the file will be allowed
only if the extension part of the name is .EXE, .COM, or .BAT.
Not set by default.
sys_immutable
If set, ATTR_SYS attribute on FAT is handled as IMMUTABLE flag
on Linux. Not set by default.
flush If set, the filesystem will try to flush to disk more early than
normal. Not set by default.
usefree
Use the "free clusters" value stored on FSINFO. It’ll be used to
determine number of free clusters without scanning disk. But
it’s not used by default, because recent Windows don’t update it
correctly in some case. If you are sure the "free clusters" on
FSINFO is correct, by this option you can avoid scanning disk.
dots, nodots, dotsOK=[yes|no]
Various misguided attempts to force Unix or DOS conventions onto
a FAT filesystem.
Mount options for hfs
creator=cccc, type=cccc
Set the creator/type values as shown by the MacOS finder used
for creating new files. Default values: ’????’.
uid=n, gid=n
Set the owner and group of all files. (Default: the uid and gid
of the current process.)
dir_umask=n, file_umask=n, umask=n
Set the umask used for all directories, all regular files, or
all files and directories. Defaults to the umask of the current
process.
session=n
Select the CDROM session to mount. Defaults to leaving that
decision to the CDROM driver. This option will fail with
anything but a CDROM as underlying device.
part=n Select partition number n from the device. Only makes sense for
CDROMS. Defaults to not parsing the partition table at all.
quiet Don’t complain about invalid mount options.
Mount options for hpfs
uid=value and gid=value
Set the owner and group of all files. (Default: the uid and gid
of the current process.)
umask=value
Set the umask (the bitmask of the permissions that are not
present). The default is the umask of the current process. The
value is given in octal.
case={lower|asis}
Convert all files names to lower case, or leave them. (Default:
case=lower.)
conv={binary|text|auto}
For conv=text, delete some random CRs (in particular, all
followed by NL) when reading a file. For conv=auto, choose more
or less at random between conv=binary and conv=text. For
conv=binary, just read what is in the file. This is the default.
nocheck
Do not abort mounting when certain consistency checks fail.
Mount options for iso9660
ISO 9660 is a standard describing a filesystem structure to be used on
CD-ROMs. (This filesystem type is also seen on some DVDs. See also the
udf filesystem.)
Normal iso9660 filenames appear in a 8.3 format (i.e., DOS-like
restrictions on filename length), and in addition all characters are in
upper case. Also there is no field for file ownership, protection,
number of links, provision for block/character devices, etc.
Rock Ridge is an extension to iso9660 that provides all of these unix
like features. Basically there are extensions to each directory record
that supply all of the additional information, and when Rock Ridge is
in use, the filesystem is indistinguishable from a normal UNIX
filesystem (except that it is read-only, of course).
norock Disable the use of Rock Ridge extensions, even if available. Cf.
map.
nojoliet
Disable the use of Microsoft Joliet extensions, even if
available. Cf. map.
check={r[elaxed]|s[trict]}
With check=relaxed, a filename is first converted to lower case
before doing the lookup. This is probably only meaningful
together with norock and map=normal. (Default: check=strict.)
uid=value and gid=value
Give all files in the filesystem the indicated user or group id,
possibly overriding the information found in the Rock Ridge
extensions. (Default: uid=0,gid=0.)
map={n[ormal]|o[ff]|a[corn]}
For non-Rock Ridge volumes, normal name translation maps upper
to lower case ASCII, drops a trailing ‘;1’, and converts ‘;’ to
‘.’. With map=off no name translation is done. See norock.
(Default: map=normal.) map=acorn is like map=normal but also
apply Acorn extensions if present.
mode=value
For non-Rock Ridge volumes, give all files the indicated mode.
(Default: read permission for everybody.) Since Linux 2.1.37
one no longer needs to specify the mode in decimal. (Octal is
indicated by a leading 0.)
unhide Also show hidden and associated files. (If the ordinary files
and the associated or hidden files have the same filenames, this
may make the ordinary files inaccessible.)
block={512|1024|2048}
Set the block size to the indicated value. (Default:
block=1024.)
conv={a[uto]|b[inary]|m[text]|t[ext]}
(Default: conv=binary.) Since Linux 1.3.54 this option has no
effect anymore. (And non-binary settings used to be very
dangerous, possibly leading to silent data corruption.)
cruft If the high byte of the file length contains other garbage, set
this mount option to ignore the high order bits of the file
length. This implies that a file cannot be larger than 16MB.
session=x
Select number of session on multisession CD. (Since 2.3.4.)
sbsector=xxx
Session begins from sector xxx. (Since 2.3.4.)
The following options are the same as for vfat and specifying them only
makes sense when using discs encoded using Microsoft’s Joliet
extensions.
iocharset=value
Character set to use for converting 16 bit Unicode characters on
CD to 8 bit characters. The default is iso8859-1.
utf8 Convert 16 bit Unicode characters on CD to UTF-8.
Mount options for jfs
iocharset=name
Character set to use for converting from Unicode to ASCII. The
default is to do no conversion. Use iocharset=utf8 for UTF8
translations. This requires CONFIG_NLS_UTF8 to be set in the
kernel .config file.
resize=value
Resize the volume to value blocks. JFS only supports growing a
volume, not shrinking it. This option is only valid during a
remount, when the volume is mounted read-write. The resize
keyword with no value will grow the volume to the full size of
the partition.
nointegrity
Do not write to the journal. The primary use of this option is
to allow for higher performance when restoring a volume from
backup media. The integrity of the volume is not guaranteed if
the system abnormally abends.
integrity
Default. Commit metadata changes to the journal. Use this
option to remount a volume where the nointegrity option was
previously specified in order to restore normal behavior.
errors={continue|remount-ro|panic}
Define the behaviour when an error is encountered. (Either
ignore errors and just mark the filesystem erroneous and
continue, or remount the filesystem read-only, or panic and halt
the system.)
noquota|quota|usrquota|grpquota
These options are accepted but ignored.
Mount options for minix
None.
Mount options for msdos
See mount options for fat. If the msdos filesystem detects an
inconsistency, it reports an error and sets the file system read-only.
The filesystem can be made writeable again by remounting it.
Mount options for ncpfs
Just like nfs, the ncpfs implementation expects a binary argument (a
struct ncp_mount_data) to the mount system call. This argument is
constructed by ncpmount(8) and the current version of mount (2.12) does
not know anything about ncpfs.
Mount options for nfs and nfs4
See the options section of the nfs(5) man page (nfs-utils package must
be installed).
The nfs and nfs4 implementation expects a binary argument (a struct
nfs_mount_data) to the mount system call. This argument is constructed
by mount.nfs(8) and the current version of mount (2.13) does not know
anything about nfs and nfs4.
Mount options for ntfs
iocharset=name
Character set to use when returning file names. Unlike VFAT,
NTFS suppresses names that contain unconvertible characters.
Deprecated.
nls=name
New name for the option earlier called iocharset.
utf8 Use UTF-8 for converting file names.
uni_xlate={0|1|2}
For 0 (or ‘no’ or ‘false’), do not use escape sequences for
unknown Unicode characters. For 1 (or ‘yes’ or ‘true’) or 2,
use vfat-style 4-byte escape sequences starting with ":". Here 2
give a little-endian encoding and 1 a byteswapped bigendian
encoding.
posix=[0|1]
If enabled (posix=1), the filesystem distinguishes between upper
and lower case. The 8.3 alias names are presented as hard links
instead of being suppressed. This option is obsolete.
uid=value, gid=value and umask=value
Set the file permission on the filesystem. The umask value is
given in octal. By default, the files are owned by root and not
readable by somebody else.
Mount options for proc
uid=value and gid=value
These options are recognized, but have no effect as far as I can
see.
Mount options for ramfs
Ramfs is a memory based filesystem. Mount it and you have it. Unmount
it and it is gone. Present since Linux 2.3.99pre4. There are no mount
options.
Mount options for reiserfs
Reiserfs is a journaling filesystem.
conv Instructs version 3.6 reiserfs software to mount a version 3.5
filesystem, using the 3.6 format for newly created objects. This
filesystem will no longer be compatible with reiserfs 3.5 tools.
hash={rupasov|tea|r5|detect}
Choose which hash function reiserfs will use to find files
within directories.
rupasov
A hash invented by Yury Yu. Rupasov. It is fast and
preserves locality, mapping lexicographically close file
names to close hash values. This option should not be
used, as it causes a high probability of hash collisions.
tea A Davis-Meyer function implemented by Jeremy
Fitzhardinge. It uses hash permuting bits in the name.
It gets high randomness and, therefore, low probability
of hash collisions at some CPU cost. This may be used if
EHASHCOLLISION errors are experienced with the r5 hash.
r5 A modified version of the rupasov hash. It is used by
default and is the best choice unless the filesystem has
huge directories and unusual file-name patterns.
detect Instructs mount to detect which hash function is in use
by examining the filesystem being mounted, and to write
this information into the reiserfs superblock. This is
only useful on the first mount of an old format
filesystem.
hashed_relocation
Tunes the block allocator. This may provide performance
improvements in some situations.
no_unhashed_relocation
Tunes the block allocator. This may provide performance
improvements in some situations.
noborder
Disable the border allocator algorithm invented by Yury Yu.
Rupasov. This may provide performance improvements in some
situations.
nolog Disable journalling. This will provide slight performance
improvements in some situations at the cost of losing reiserfs’s
fast recovery from crashes. Even with this option turned on,
reiserfs still performs all journalling operations, save for
actual writes into its journalling area. Implementation of
nolog is a work in progress.
notail By default, reiserfs stores small files and ‘file tails’
directly into its tree. This confuses some utilities such as
LILO(8). This option is used to disable packing of files into
the tree.
replayonly
Replay the transactions which are in the journal, but do not
actually mount the filesystem. Mainly used by reiserfsck.
resize=number
A remount option which permits online expansion of reiserfs
partitions. Instructs reiserfs to assume that the device has
number blocks. This option is designed for use with devices
which are under logical volume management (LVM). There is a
special resizer utility which can be obtained from
ftp://ftp.namesys.com/pub/reiserfsprogs.
user_xattr
Enable Extended User Attributes. See the attr(5) manual page.
acl Enable POSIX Access Control Lists. See the acl(5) manual page.
Mount options for romfs
None.
Mount options for smbfs
Just like nfs, the smbfs implementation expects a binary argument (a
struct smb_mount_data) to the mount system call. This argument is
constructed by smbmount(8) and the current version of mount (2.12) does
not know anything about smbfs.
Mount options for sysv
None.
Mount options for tmpfs
size=nbytes
Override default maximum size of the filesystem. The size is
given in bytes, and rounded up to entire pages. The default is
half of the memory. The size parameter also accepts a suffix %
to limit this tmpfs instance to that percentage of your physical
RAM: the default, when neither size nor nr_blocks is specified,
is size=50%
nr_blocks=
The same as size, but in blocks of PAGE_CACHE_SIZE
nr_inodes=
The maximum number of inodes for this instance. The default is
half of the number of your physical RAM pages, or (on a machine
with highmem) the number of lowmem RAM pages, whichever is the
lower.
The tmpfs mount options for sizing ( size, nr_blocks, and nr_inodes)
accept a suffix k, m or g for Ki, Mi, Gi (binary kilo, mega and giga)
and can be changed on remount.
mode= Set initial permissions of the root directory.
uid= The user id.
gid= The group id.
mpol=[default|prefer:Node|bind:NodeList|interleave|interleave:NodeList]
Set the NUMA memory allocation policy for all files in that
instance (if the kernel CONFIG_NUMA is enabled) - which can be
adjusted on the fly via ’mount -o remount ...’
default
prefers to allocate memory from the local node
prefer:Node
prefers to allocate memory from the given Node
bind:NodeList
allocates memory only from nodes in NodeList
interleave
prefers to allocate from each node in turn
interleave:NodeList
allocates from each node of NodeList in turn.
The NodeList format is a comma-separated list of decimal numbers
and ranges, a range being two hyphen-separated decimal numbers,
the smallest and largest node numbers in the range. For
example, mpol=bind:0-3,5,7,9-15
Note that trying to mount a tmpfs with an mpol option will fail
if the running kernel does not support NUMA; and will fail if
its nodelist specifies a node which is not online. If your
system relies on that tmpfs being mounted, but from time to time
runs a kernel built without NUMA capability (perhaps a safe
recovery kernel), or with fewer nodes online, then it is
advisable to omit the mpol option from automatic mount options.
It can be added later, when the tmpfs is already mounted on
MountPoint, by ’mount -o remount,mpol=Policy:NodeList
MountPoint’.
Mount options for udf
udf is the "Universal Disk Format" filesystem defined by the Optical
Storage Technology Association, and is often used for DVD-ROM. See
also iso9660.
gid= Set the default group.
umask= Set the default umask. The value is given in octal.
uid= Set the default user.
unhide Show otherwise hidden files.
undelete
Show deleted files in lists.
nostrict
Unset strict conformance.
iocharset
Set the NLS character set.
bs= Set the block size. (May not work unless 2048.)
novrs Skip volume sequence recognition.
session=
Set the CDROM session counting from 0. Default: last session.
anchor=
Override standard anchor location. Default: 256.
volume=
Override the VolumeDesc location. (unused)
partition=
Override the PartitionDesc location. (unused)
lastblock=
Set the last block of the filesystem.
fileset=
Override the fileset block location. (unused)
rootdir=
Override the root directory location. (unused)
Mount options for ufs
ufstype=value
UFS is a filesystem widely used in different operating systems.
The problem are differences among implementations. Features of
some implementations are undocumented, so its hard to recognize
the type of ufs automatically. That’s why the user must specify
the type of ufs by mount option. Possible values are:
old Old format of ufs, this is the default, read only.
(Don’t forget to give the -r option.)
44bsd For filesystems created by a BSD-like system
(NetBSD,FreeBSD,OpenBSD).
sun For filesystems created by SunOS or Solaris on Sparc.
sunx86 For filesystems created by Solaris on x86.
hp For filesystems created by HP-UX, read-only.
nextstep
For filesystems created by NeXTStep (on NeXT station)
(currently read only).
nextstep-cd
For NextStep CDROMs (block_size == 2048), read-only.
openstep
For filesystems created by OpenStep (currently read
only). The same filesystem type is also used by Mac OS
X.
onerror=value
Set behaviour on error:
panic If an error is encountered, cause a kernel panic.
[lock|umount|repair]
These mount options don’t do anything at present; when an
error is encountered only a console message is printed.
Mount options for umsdos
See mount options for msdos. The dotsOK option is explicitly killed by
umsdos.
Mount options for vfat
First of all, the mount options for fat are recognized. The dotsOK
option is explicitly killed by vfat. Furthermore, there are
uni_xlate
Translate unhandled Unicode characters to special escaped
sequences. This lets you backup and restore filenames that are
created with any Unicode characters. Without this option, a ’?’
is used when no translation is possible. The escape character is
’:’ because it is otherwise illegal on the vfat filesystem. The
escape sequence that gets used, where u is the unicode
character, is: ’:’, (u & 0x3f), ((u>>6) & 0x3f), (u>>12).
posix Allow two files with names that only differ in case.
nonumtail
First try to make a short name without sequence number, before
trying name~num.ext.
utf8 UTF8 is the filesystem safe 8-bit encoding of Unicode that is
used by the console. It can be be enabled for the filesystem
with this option or disabled with utf8=0, utf8=no or utf8=false.
If ‘uni_xlate’ gets set, UTF8 gets disabled.
shortname={lower|win95|winnt|mixed}
Defines the behaviour for creation and display of filenames
which fit into 8.3 characters. If a long name for a file exists,
it will always be preferred display. There are four modes: :
lower Force the short name to lower case upon display; store a
long name when the short name is not all upper case. This
mode is the default.
win95 Force the short name to upper case upon display; store a
long name when the short name is not all upper case.
winnt Display the shortname as is; store a long name when the
short name is not all lower case or all upper case.
mixed Display the short name as is; store a long name when the
short name is not all upper case.
Mount options for usbfs
devuid=uid and devgid=gid and devmode=mode
Set the owner and group and mode of the device files in the
usbfs filesystem (default: uid=gid=0, mode=0644). The mode is
given in octal.
busuid=uid and busgid=gid and busmode=mode
Set the owner and group and mode of the bus directories in the
usbfs filesystem (default: uid=gid=0, mode=0555). The mode is
given in octal.
listuid=uid and listgid=gid and listmode=mode
Set the owner and group and mode of the file devices (default:
uid=gid=0, mode=0444). The mode is given in octal.
Mount options for xenix
None.
Mount options for xfs
allocsize=size
Sets the buffered I/O end-of-file preallocation size when doing
delayed allocation writeout (default size is 64KiB). Valid
values for this option are page size (typically 4KiB) through to
1GiB, inclusive, in power-of-2 increments.
attr2|noattr2
The options enable/disable (default is disabled for backward
compatibility on-disk) an "opportunistic" improvement to be made
in the way inline extended attributes are stored on-disk. When
the new form is used for the first time (by setting or removing
extended attributes) the on-disk superblock feature bit field
will be updated to reflect this format being in use.
barrier
Enables the use of block layer write barriers for writes into
the journal and unwritten extent conversion. This allows for
drive level write caching to be enabled, for devices that
support write barriers.
dmapi Enable the DMAPI (Data Management API) event callouts. Use with
the mtpt option.
grpid|bsdgroups and nogrpid|sysvgroups
These options define what group ID a newly created file gets.
When grpid is set, it takes the group ID of the directory in
which it is created; otherwise (the default) it takes the fsgid
of the current process, unless the directory has the setgid bit
set, in which case it takes the gid from the parent directory,
and also gets the setgid bit set if it is a directory itself.
ihashsize=value
Sets the number of hash buckets available for hashing the in-
memory inodes of the specified mount point. If a value of zero
is used, the value selected by the default algorithm will be
displayed in /proc/mounts.
ikeep|noikeep
When inode clusters are emptied of inodes, keep them around on
the disk (ikeep) - this is the traditional XFS behaviour and is
still the default for now. Using the noikeep option, inode
clusters are returned to the free space pool.
inode64
Indicates that XFS is allowed to create inodes at any location
in the filesystem, including those which will result in inode
numbers occupying more than 32 bits of significance. This is
provided for backwards compatibility, but causes problems for
backup applications that cannot handle large inode numbers.
largeio|nolargeio
If nolargeio is specified, the optimal I/O reported in
st_blksize by stat(2) will be as small as possible to allow user
applications to avoid inefficient read/modify/write I/O. If
largeio is specified, a filesystem that has a swidth specified
will return the swidth value (in bytes) in st_blksize. If the
filesystem does not have a swidth specified but does specify an
allocsize then allocsize (in bytes) will be returned instead.
If neither of these two options are specified, then filesystem
will behave as if nolargeio was specified.
logbufs=value
Set the number of in-memory log buffers. Valid numbers range
from 2-8 inclusive. The default value is 8 buffers for
filesystems with a blocksize of 64KiB, 4 buffers for filesystems
with a blocksize of 32KiB, 3 buffers for filesystems with a
blocksize of 16KiB and 2 buffers for all other configurations.
Increasing the number of buffers may increase performance on
some workloads at the cost of the memory used for the additional
log buffers and their associated control structures.
logbsize=value
Set the size of each in-memory log buffer. Size may be
specified in bytes, or in kilobytes with a "k" suffix. Valid
sizes for version 1 and version 2 logs are 16384 (16k) and 32768
(32k). Valid sizes for version 2 logs also include 65536 (64k),
131072 (128k) and 262144 (256k). The default value for machines
with more than 32MiB of memory is 32768, machines with less
memory use 16384 by default.
logdev=device and rtdev=device
Use an external log (metadata journal) and/or real-time device.
An XFS filesystem has up to three parts: a data section, a log
section, and a real-time section. The real-time section is
optional, and the log section can be separate from the data
section or contained within it. Refer to xfs(5).
mtpt=mountpoint
Use with the dmapi option. The value specified here will be
included in the DMAPI mount event, and should be the path of the
actual mountpoint that is used.
noalign
Data allocations will not be aligned at stripe unit boundaries.
noatime
Access timestamps are not updated when a file is read.
norecovery
The filesystem will be mounted without running log recovery. If
the filesystem was not cleanly unmounted, it is likely to be
inconsistent when mounted in norecovery mode. Some files or
directories may not be accessible because of this. Filesystems
mounted norecovery must be mounted read-only or the mount will
fail.
nouuid Don’t check for double mounted filesystems using the filesystem
uuid. This is useful to mount LVM snapshot volumes.
osyncisosync
Make O_SYNC writes implement true O_SYNC. WITHOUT this option,
Linux XFS behaves as if an osyncisdsync option is used, which
will make writes to files opened with the O_SYNC flag set behave
as if the O_DSYNC flag had been used instead. This can result
in better performance without compromising data safety. However
if this option is not in effect, timestamp updates from O_SYNC
writes can be lost if the system crashes. If timestamp updates
are critical, use the osyncisosync option.
uquota|usrquota|uqnoenforce|quota
User disk quota accounting enabled, and limits (optionally)
enforced. Refer to xfs_quota(8) for further details.
gquota|grpquota|gqnoenforce
Group disk quota accounting enabled and limits (optionally)
enforced. Refer to xfs_quota(8) for further details.
pquota|prjquota|pqnoenforce
Project disk quota accounting enabled and limits (optionally)
enforced. Refer to xfs_quota(8) for further details.
sunit=value and swidth=value
Used to specify the stripe unit and width for a RAID device or a
stripe volume. value must be specified in 512-byte block units.
If this option is not specified and the filesystem was made on a
stripe volume or the stripe width or unit were specified for the
RAID device at mkfs time, then the mount system call will
restore the value from the superblock. For filesystems that are
made directly on RAID devices, these options can be used to
override the information in the superblock if the underlying
disk layout changes after the filesystem has been created. The
swidth option is required if the sunit option has been
specified, and must be a multiple of the sunit value.
swalloc
Data allocations will be rounded up to stripe width boundaries
when the current end of file is being extended and the file size
is larger than the stripe width size.
Mount options for xiafs
None. Although nothing is wrong with xiafs, it is not used much, and is
not maintained. Probably one shouldn’t use it. Since Linux version
2.1.21 xiafs is no longer part of the kernel source.
THE LOOP DEVICE
One further possible type is a mount via the loop device. For example,
the command
mount /tmp/fdimage /mnt -t vfat -o loop=/dev/loop3
will set up the loop device /dev/loop3 to correspond to the file
/tmp/fdimage, and then mount this device on /mnt.
This type of mount knows about 11 options, namely loop, offset,
sizelimit, encryption, pseed, phash, loinit, gpgkey, gpghome,
cleartextkey and itercountk that are really options to losetup(8).
(These options can be used in addition to those specific to the
filesystem type.)
If the mount requires a passphrase, you will be prompted for one unless
you specify a file descriptor to read from instead with the -p command
line option, or specify a file name with cleartextkey mount option. If
no explicit loop device is mentioned (but just an option ‘-o loop’ is
given), then mount will try to find some unused loop device and use
that.
Since Linux 2.6.25 is supported auto-destruction of loop devices and
then any loop device allocated by mount will be freed by umount
independently on /etc/mtab.
You can also free a loop device by hand, using ‘losetup -d’ or ‘umount
-d‘.
RETURN CODES
mount has the following return codes (the bits can be ORed):
0 success
1 incorrect invocation or permissions
2 system error (out of memory, cannot fork, no more loop devices)
4 internal mount bug
8 user interrupt
16 problems writing or locking /etc/mtab
32 mount failure
64 some mount succeeded
NOTES
The syntax of external mount helpers is:
/sbin/mount.<suffix> spec dir [-sfnv] [-o options]
where the <suffix> is filesystem type and -sfnvo options have same
meaning like standard mount options.
FILES
/etc/fstab filesystem table
/etc/mtab table of mounted filesystems
/etc/mtab~ lock file
/etc/mtab.tmp temporary file
/etc/filesystems a list of filesystem types to try
SEE ALSO
mount(2), umount(2), fstab(5), umount(8), swapon(8), nfs(5), xfs(5),
e2label(8), xfs_admin(8), mountd(8), nfsd(8), mke2fs(8), tune2fs(8),
losetup(8)
BUGS
It is possible for a corrupted filesystem to cause a crash.
Some Linux filesystems don’t support -o sync and -o dirsync (the ext2,
ext3, fat and vfat filesystems do support synchronous updates (a la
BSD) when mounted with the sync option).
The -o remount may not be able to change mount parameters (all ext2fs-
specific parameters, except sb, are changeable with a remount, for
example, but you can’t change gid or umask for the fatfs).
Mount by label or uuid will work only if your devices have the names
listed in /proc/partitions. In particular, it may well fail if the
kernel was compiled with devfs but devfs is not mounted.
It is possible that files /etc/mtab and /proc/mounts don’t match. The
first file is based only on the mount command options, but the content
of the second file also depends on the kernel and others settings (e.g.
remote NFS server. In particular case the mount command may reports
unreliable information about a NFS mount point and the /proc/mounts
file usually contains more reliable information.)
Checking files on NFS filesystem referenced by file descriptors (i.e.
the fcntl and ioctl families of functions) may lead to inconsistent
result due to the lack of consistency check in kernel even if noac is
used.
HISTORY
A mount command existed in Version 5 AT&T UNIX.
AVAILABILITY
The mount command is part of the util-linux-ng package and is available
from ftp://ftp.kernel.org/pub/linux/utils/util-linux-ng/.