NAME
iptables - administration tool for IPv4 packet filtering and NAT
SYNOPSIS
iptables [-t table] {-A|-D} chain rule-specification
iptables [-t table] -I chain [rulenum] rule-specification
iptables [-t table] -R chain rulenum rule-specification
iptables [-t table] -D chain rulenum
iptables [-t table] -S [chain [rulenum]]
iptables [-t table] {-F|-L|-Z} [chain] [options...]
iptables [-t table] -N chain
iptables [-t table] -X [chain]
iptables [-t table] -P chain target
iptables [-t table] -E old-chain-name new-chain-name
rule-specification = [matches...] [target]
match = -m matchname [per-match-options]
target = -j targetname [per-target-options]
DESCRIPTION
Iptables is used to set up, maintain, and inspect the tables of IPv4
packet filter rules in the Linux kernel. Several different tables may
be defined. Each table contains a number of built-in chains and may
also contain user-defined chains.
Each chain is a list of rules which can match a set of packets. Each
rule specifies what to do with a packet that matches. This is called a
‘target’, which may be a jump to a user-defined chain in the same
table.
TARGETS
A firewall rule specifies criteria for a packet and a target. If the
packet does not match, the next rule in the chain is the examined; if
it does match, then the next rule is specified by the value of the
target, which can be the name of a user-defined chain or one of the
special values ACCEPT, DROP, QUEUE or RETURN.
ACCEPT means to let the packet through. DROP means to drop the packet
on the floor. QUEUE means to pass the packet to userspace. (How the
packet can be received by a userspace process differs by the particular
queue handler. 2.4.x and 2.6.x kernels up to 2.6.13 include the
ip_queue queue handler. Kernels 2.6.14 and later additionally include
the nfnetlink_queue queue handler. Packets with a target of QUEUE will
be sent to queue number ’0’ in this case. Please also see the NFQUEUE
target as described later in this man page.) RETURN means stop
traversing this chain and resume at the next rule in the previous
(calling) chain. If the end of a built-in chain is reached or a rule
in a built-in chain with target RETURN is matched, the target specified
by the chain policy determines the fate of the packet.
TABLES
There are currently three independent tables (which tables are present
at any time depends on the kernel configuration options and which
modules are present).
-t, --table table
This option specifies the packet matching table which the
command should operate on. If the kernel is configured with
automatic module loading, an attempt will be made to load the
appropriate module for that table if it is not already there.
The tables are as follows:
filter:
This is the default table (if no -t option is passed). It
contains the built-in chains INPUT (for packets destined to
local sockets), FORWARD (for packets being routed through
the box), and OUTPUT (for locally-generated packets).
nat:
This table is consulted when a packet that creates a new
connection is encountered. It consists of three built-ins:
PREROUTING (for altering packets as soon as they come in),
OUTPUT (for altering locally-generated packets before
routing), and POSTROUTING (for altering packets as they are
about to go out).
mangle:
This table is used for specialized packet alteration. Until
kernel 2.4.17 it had two built-in chains: PREROUTING (for
altering incoming packets before routing) and OUTPUT (for
altering locally-generated packets before routing). Since
kernel 2.4.18, three other built-in chains are also
supported: INPUT (for packets coming into the box itself),
FORWARD (for altering packets being routed through the box),
and POSTROUTING (for altering packets as they are about to
go out).
raw:
This table is used mainly for configuring exemptions from
connection tracking in combination with the NOTRACK target.
It registers at the netfilter hooks with higher priority and
is thus called before ip_conntrack, or any other IP tables.
It provides the following built-in chains: PREROUTING (for
packets arriving via any network interface) OUTPUT (for
packets generated by local processes)
OPTIONS
The options that are recognized by iptables can be divided into several
different groups.
COMMANDS
These options specify the desired action to perform. Only one of them
can be specified on the command line unless otherwise stated below. For
long versions of the command and option names, you need to use only
enough letters to ensure that iptables can differentiate it from all
other options.
-A, --append chain rule-specification
Append one or more rules to the end of the selected chain. When
the source and/or destination names resolve to more than one
address, a rule will be added for each possible address
combination.
-D, --delete chain rule-specification
-D, --delete chain rulenum
Delete one or more rules from the selected chain. There are two
versions of this command: the rule can be specified as a number
in the chain (starting at 1 for the first rule) or a rule to
match.
-I, --insert chain [rulenum] rule-specification
Insert one or more rules in the selected chain as the given rule
number. So, if the rule number is 1, the rule or rules are
inserted at the head of the chain. This is also the default if
no rule number is specified.
-R, --replace chain rulenum rule-specification
Replace a rule in the selected chain. If the source and/or
destination names resolve to multiple addresses, the command
will fail. Rules are numbered starting at 1.
-L, --list [chain]
List all rules in the selected chain. If no chain is selected,
all chains are listed. Like every other iptables command, it
applies to the specified table (filter is the default), so NAT
rules get listed by
iptables -t nat -n -L
Please note that it is often used with the -n option, in order
to avoid long reverse DNS lookups. It is legal to specify the
-Z (zero) option as well, in which case the chain(s) will be
atomically listed and zeroed. The exact output is affected by
the other arguments given. The exact rules are suppressed until
you use
iptables -L -v
-S, --list-rules [chain]
Print all rules in the selected chain. If no chain is selected,
all chains are printed like iptables-save. Like every other
iptables command, it applies to the specified table (filter is
the default).
-F, --flush [chain]
Flush the selected chain (all the chains in the table if none is
given). This is equivalent to deleting all the rules one by
one.
-Z, --zero [chain]
Zero the packet and byte counters in all chains. It is legal to
specify the -L, --list (list) option as well, to see the
counters immediately before they are cleared. (See above.)
-N, --new-chain chain
Create a new user-defined chain by the given name. There must
be no target of that name already.
-X, --delete-chain [chain]
Delete the optional user-defined chain specified. There must be
no references to the chain. If there are, you must delete or
replace the referring rules before the chain can be deleted.
The chain must be empty, i.e. not contain any rules. If no
argument is given, it will attempt to delete every non-builtin
chain in the table.
-P, --policy chain target
Set the policy for the chain to the given target. See the
section TARGETS for the legal targets. Only built-in (non-user-
defined) chains can have policies, and neither built-in nor
user-defined chains can be policy targets.
-E, --rename-chain old-chain new-chain
Rename the user specified chain to the user supplied name. This
is cosmetic, and has no effect on the structure of the table.
-h Help. Give a (currently very brief) description of the command
syntax.
PARAMETERS
The following parameters make up a rule specification (as used in the
add, delete, insert, replace and append commands).
[!] -p, --protocol protocol
The protocol of the rule or of the packet to check. The
specified protocol can be one of tcp, udp, udplite, icmp, esp,
ah, sctp or all, or it can be a numeric value, representing one
of these protocols or a different one. A protocol name from
/etc/protocols is also allowed. A "!" argument before the
protocol inverts the test. The number zero is equivalent to
all. Protocol all will match with all protocols and is taken as
default when this option is omitted.
[!] -s, --source address[/mask]
Source specification. Address can be either a network name, a
hostname (please note that specifying any name to be resolved
with a remote query such as DNS is a really bad idea), a network
IP address (with /mask), or a plain IP address. The mask can be
either a network mask or a plain number, specifying the number
of 1’s at the left side of the network mask. Thus, a mask of 24
is equivalent to 255.255.255.0. A "!" argument before the
address specification inverts the sense of the address. The flag
--src is an alias for this option.
[!] -d, --destination address[/mask]
Destination specification. See the description of the -s
(source) flag for a detailed description of the syntax. The
flag --dst is an alias for this option.
-j, --jump target
This specifies the target of the rule; i.e., what to do if the
packet matches it. The target can be a user-defined chain
(other than the one this rule is in), one of the special builtin
targets which decide the fate of the packet immediately, or an
extension (see EXTENSIONS below). If this option is omitted in
a rule (and -g is not used), then matching the rule will have no
effect on the packet’s fate, but the counters on the rule will
be incremented.
-g, --goto chain
This specifies that the processing should continue in a user
specified chain. Unlike the --jump option return will not
continue processing in this chain but instead in the chain that
called us via --jump.
[!] -i, --in-interface name
Name of an interface via which a packet was received (only for
packets entering the INPUT, FORWARD and PREROUTING chains).
When the "!" argument is used before the interface name, the
sense is inverted. If the interface name ends in a "+", then
any interface which begins with this name will match. If this
option is omitted, any interface name will match.
[!] -o, --out-interface name
Name of an interface via which a packet is going to be sent (for
packets entering the FORWARD, OUTPUT and POSTROUTING chains).
When the "!" argument is used before the interface name, the
sense is inverted. If the interface name ends in a "+", then
any interface which begins with this name will match. If this
option is omitted, any interface name will match.
[!] -f, --fragment
This means that the rule only refers to second and further
fragments of fragmented packets. Since there is no way to tell
the source or destination ports of such a packet (or ICMP type),
such a packet will not match any rules which specify them. When
the "!" argument precedes the "-f" flag, the rule will only
match head fragments, or unfragmented packets.
-c, --set-counters packets bytes
This enables the administrator to initialize the packet and byte
counters of a rule (during INSERT, APPEND, REPLACE operations).
OTHER OPTIONS
The following additional options can be specified:
-v, --verbose
Verbose output. This option makes the list command show the
interface name, the rule options (if any), and the TOS masks.
The packet and byte counters are also listed, with the suffix
’K’, ’M’ or ’G’ for 1000, 1,000,000 and 1,000,000,000
multipliers respectively (but see the -x flag to change this).
For appending, insertion, deletion and replacement, this causes
detailed information on the rule or rules to be printed.
-n, --numeric
Numeric output. IP addresses and port numbers will be printed
in numeric format. By default, the program will try to display
them as host names, network names, or services (whenever
applicable).
-x, --exact
Expand numbers. Display the exact value of the packet and byte
counters, instead of only the rounded number in K’s (multiples
of 1000) M’s (multiples of 1000K) or G’s (multiples of 1000M).
This option is only relevant for the -L command.
--line-numbers
When listing rules, add line numbers to the beginning of each
rule, corresponding to that rule’s position in the chain.
--modprobe=command
When adding or inserting rules into a chain, use command to load
any necessary modules (targets, match extensions, etc).
MATCH EXTENSIONS
iptables can use extended packet matching modules. These are loaded in
two ways: implicitly, when -p or --protocol is specified, or with the
-m or --match options, followed by the matching module name; after
these, various extra command line options become available, depending
on the specific module. You can specify multiple extended match
modules in one line, and you can use the -h or --help options after the
module has been specified to receive help specific to that module.
The following are included in the base package, and most of these can
be preceded by a "!" to invert the sense of the match.
addrtype
This module matches packets based on their address type. Address types
are used within the kernel networking stack and categorize addresses
into various groups. The exact definition of that group depends on the
specific layer three protocol.
The following address types are possible:
UNSPEC an unspecified address (i.e. 0.0.0.0)
UNICAST
an unicast address
LOCAL a local address
BROADCAST
a broadcast address
ANYCAST
an anycast packet
MULTICAST
a multicast address
BLACKHOLE
a blackhole address
UNREACHABLE
an unreachable address
PROHIBIT
a prohibited address
THROW FIXME
NAT FIXME
XRESOLVE
[!] --src-type type
Matches if the source address is of given type
[!] --dst-type type
Matches if the destination address is of given type
--limit-iface-in
The address type checking can be limited to the interface the
packet is coming in. This option is only valid in the
PREROUTING, INPUT and FORWARD chains. It cannot be specified
with the --limit-iface-out option.
--limit-iface-out
The address type checking can be limited to the interface the
packet is going out. This option is only valid in the
POSTROUTING, OUTPUT and FORWARD chains. It cannot be specified
with the --limit-iface-in option.
ah
This module matches the SPIs in Authentication header of IPsec packets.
[!] --ahspi spi[:spi]
cluster
Allows you to deploy gateway and back-end load-sharing clusters without
the need of load-balancers.
This match requires that all the nodes see the same packets. Thus, the
cluster match decides if this node has to handle a packet given the
following options:
--cluster-total-nodes num
Set number of total nodes in cluster.
[!] --cluster-local-node num
Set the local node number ID.
[!] --cluster-local-nodemask mask
Set the local node number ID mask. You can use this option
instead of --cluster-local-node.
--cluster-hash-seed value
Set seed value of the Jenkins hash.
Example:
iptables -A PREROUTING -t mangle -i eth1 -m cluster
--cluster-total-nodes 2 --cluster-local-node 1
--cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff
iptables -A PREROUTING -t mangle -i eth2 -m cluster
--cluster-total-nodes 2 --cluster-local-node 1
--cluster-hash-seed 0xdeadbeef -j MARK --set-mark 0xffff
iptables -A PREROUTING -t mangle -i eth1 -m mark ! --mark 0xffff
-j DROP
iptables -A PREROUTING -t mangle -i eth2 -m mark ! --mark 0xffff
-j DROP
And the following commands to make all nodes see the same packets:
ip maddr add 01:00:5e:00:01:01 dev eth1
ip maddr add 01:00:5e:00:01:02 dev eth2
arptables -A OUTPUT -o eth1 --h-length 6 -j mangle --mangle-mac-
s 01:00:5e:00:01:01
arptables -A INPUT -i eth1 --h-length 6 --destination-mac
01:00:5e:00:01:01 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27
arptables -A OUTPUT -o eth2 --h-length 6 -j mangle
--mangle-mac-s 01:00:5e:00:01:02
arptables -A INPUT -i eth2 --h-length 6 --destination-mac
01:00:5e:00:01:02 -j mangle --mangle-mac-d 00:zz:yy:xx:5a:27
In the case of TCP connections, pickup facility has to be disabled to
avoid marking TCP ACK packets coming in the reply direction as valid.
echo 0 > /proc/sys/net/netfilter/nf_conntrack_tcp_loose
comment
Allows you to add comments (up to 256 characters) to any rule.
--comment comment
Example:
iptables -A INPUT -s 192.168.0.0/16 -m comment --comment "A
privatized IP block"
connbytes
Match by how many bytes or packets a connection (or one of the two
flows constituting the connection) has transferred so far, or by
average bytes per packet.
The counters are 64-bit and are thus not expected to overflow ;)
The primary use is to detect long-lived downloads and mark them to be
scheduled using a lower priority band in traffic control.
The transferred bytes per connection can also be viewed through
‘conntrack -L‘ and accessed via ctnetlink.
NOTE that for connections which have no accounting information, the
match will always return false. The "net.netfilter.nf_conntrack_acct"
sysctl flag controls whether new connections will be byte/packet
counted. Existing connection flows will not be gaining/losing a/the
accounting structure when be sysctl flag is flipped.
[!] --connbytes from[:to]
match packets from a connection whose packets/bytes/average
packet size is more than FROM and less than TO bytes/packets. if
TO is omitted only FROM check is done. "!" is used to match
packets not falling in the range.
--connbytes-dir {original|reply|both}
which packets to consider
--connbytes-mode {packets|bytes|avgpkt}
whether to check the amount of packets, number of bytes
transferred or the average size (in bytes) of all packets
received so far. Note that when "both" is used together with
"avgpkt", and data is going (mainly) only in one direction (for
example HTTP), the average packet size will be about half of the
actual data packets.
Example:
iptables .. -m connbytes --connbytes 10000:100000
--connbytes-dir both --connbytes-mode bytes ...
connlimit
Allows you to restrict the number of parallel connections to a server
per client IP address (or client address block).
[!] --connlimit-above n
Match if the number of existing connections is (not) above n.
--connlimit-mask prefix_length
Group hosts using the prefix length. For IPv4, this must be a
number between (including) 0 and 32. For IPv6, between 0 and
128.
Examples:
# allow 2 telnet connections per client host
iptables -A INPUT -p tcp --syn --dport 23 -m connlimit
--connlimit-above 2 -j REJECT
# you can also match the other way around:
iptables -A INPUT -p tcp --syn --dport 23 -m connlimit !
--connlimit-above 2 -j ACCEPT
# limit the number of parallel HTTP requests to 16 per class C sized
network (24 bit netmask)
iptables -p tcp --syn --dport 80 -m connlimit --connlimit-above
16 --connlimit-mask 24 -j REJECT
# limit the number of parallel HTTP requests to 16 for the link local
network
(ipv6) ip6tables -p tcp --syn --dport 80 -s fe80::/64 -m
connlimit --connlimit-above 16 --connlimit-mask 64 -j REJECT
connmark
This module matches the netfilter mark field associated with a
connection (which can be set using the CONNMARK target below).
[!] --mark value[/mask]
Matches packets in connections with the given mark value (if a
mask is specified, this is logically ANDed with the mark before
the comparison).
conntrack
This module, when combined with connection tracking, allows access to
the connection tracking state for this packet/connection.
[!] --ctstate statelist
statelist is a comma separated list of the connection states to
match. Possible states are listed below.
[!] --ctproto l4proto
Layer-4 protocol to match (by number or name)
[!] --ctorigsrc address[/mask]
[!] --ctorigdst address[/mask]
[!] --ctreplsrc address[/mask]
[!] --ctrepldst address[/mask]
Match against original/reply source/destination address
[!] --ctorigsrcport port
[!] --ctorigdstport port
[!] --ctreplsrcport port
[!] --ctrepldstport port
Match against original/reply source/destination port
(TCP/UDP/etc.) or GRE key.
[!] --ctstatus statelist
statuslist is a comma separated list of the connection statuses
to match. Possible statuses are listed below.
[!] --ctexpire time[:time]
Match remaining lifetime in seconds against given value or range
of values (inclusive)
--ctdir {ORIGINAL|REPLY}
Match packets that are flowing in the specified direction. If
this flag is not specified at all, matches packets in both
directions.
States for --ctstate:
INVALID
meaning that the packet is associated with no known connection
NEW meaning that the packet has started a new connection, or
otherwise associated with a connection which has not seen
packets in both directions, and
ESTABLISHED
meaning that the packet is associated with a connection which
has seen packets in both directions,
RELATED
meaning that the packet is starting a new connection, but is
associated with an existing connection, such as an FTP data
transfer, or an ICMP error.
SNAT A virtual state, matching if the original source address differs
from the reply destination.
DNAT A virtual state, matching if the original destination differs
from the reply source.
Statuses for --ctstatus:
NONE None of the below.
EXPECTED
This is an expected connection (i.e. a conntrack helper set it
up)
SEEN_REPLY
Conntrack has seen packets in both directions.
ASSURED
Conntrack entry should never be early-expired.
CONFIRMED
Connection is confirmed: originating packet has left box.
dccp
[!] --source-port,--sport port[:port]
[!] --destination-port,--dport port[:port]
[!] --dccp-types mask
Match when the DCCP packet type is one of ’mask’. ’mask’ is a
comma-separated list of packet types. Packet types are: REQUEST
RESPONSE DATA ACK DATAACK CLOSEREQ CLOSE RESET SYNC SYNCACK
INVALID.
[!] --dccp-option number
Match if DCP option set.
dscp
This module matches the 6 bit DSCP field within the TOS field in the IP
header. DSCP has superseded TOS within the IETF.
[!] --dscp value
Match against a numeric (decimal or hex) value [0-63].
[!] --dscp-class class
Match the DiffServ class. This value may be any of the BE, EF,
AFxx or CSx classes. It will then be converted into its
according numeric value.
ecn
This allows you to match the ECN bits of the IPv4 and TCP header. ECN
is the Explicit Congestion Notification mechanism as specified in
RFC3168
[!] --ecn-tcp-cwr
This matches if the TCP ECN CWR (Congestion Window Received) bit
is set.
[!] --ecn-tcp-ece
This matches if the TCP ECN ECE (ECN Echo) bit is set.
[!] --ecn-ip-ect num
This matches a particular IPv4 ECT (ECN-Capable Transport). You
have to specify a number between ‘0’ and ‘3’.
esp
This module matches the SPIs in ESP header of IPsec packets.
[!] --espspi spi[:spi]
hashlimit
hashlimit uses hash buckets to express a rate limiting match (like the
limit match) for a group of connections using a single iptables rule.
Grouping can be done per-hostgroup (source and/or destination address)
and/or per-port. It gives you the ability to express "N packets per
time quantum per group":
matching on source host
"1000 packets per second for every host in 192.168.0.0/16"
matching on source prot
"100 packets per second for every service of 192.168.1.1"
matching on subnet
"10000 packets per minute for every /28 subnet in 10.0.0.0/8"
A hash limit option (--hashlimit-upto, --hashlimit-above) and
--hashlimit-name are required.
--hashlimit-upto amount[/second|/minute|/hour|/day]
Match if the rate is below or equal to amount/quantum. It is
specified as a number, with an optional time quantum suffix; the
default is 3/hour.
--hashlimit-above amount[/second|/minute|/hour|/day]
Match if the rate is above amount/quantum.
--hashlimit-burst amount
Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not
reached, up to this number; the default is 5.
--hashlimit-mode {srcip|srcport|dstip|dstport},...
A comma-separated list of objects to take into consideration. If
no --hashlimit-mode option is given, hashlimit acts like limit,
but at the expensive of doing the hash housekeeping.
--hashlimit-srcmask prefix
When --hashlimit-mode srcip is used, all source addresses
encountered will be grouped according to the given prefix length
and the so-created subnet will be subject to hashlimit. prefix
must be between (inclusive) 0 and 32. Note that
--hashlimit-srcmask 0 is basically doing the same thing as not
specifying srcip for --hashlimit-mode, but is technically more
expensive.
--hashlimit-dstmask prefix
Like --hashlimit-srcmask, but for destination addresses.
--hashlimit-name foo
The name for the /proc/net/ipt_hashlimit/foo entry.
--hashlimit-htable-size buckets
The number of buckets of the hash table
--hashlimit-htable-max entries
Maximum entries in the hash.
--hashlimit-htable-expire msec
After how many milliseconds do hash entries expire.
--hashlimit-htable-gcinterval msec
How many milliseconds between garbage collection intervals.
helper
This module matches packets related to a specific conntrack-helper.
[!] --helper string
Matches packets related to the specified conntrack-helper.
string can be "ftp" for packets related to a ftp-session on
default port. For other ports append -portnr to the value, ie.
"ftp-2121".
Same rules apply for other conntrack-helpers.
icmp
This extension can be used if ‘--protocol icmp’ is specified. It
provides the following option:
[!] --icmp-type {type[/code]|typename}
This allows specification of the ICMP type, which can be a
numeric ICMP type, type/code pair, or one of the ICMP type names
shown by the command
iptables -p icmp -h
iprange
This matches on a given arbitrary range of IP addresses.
[!] --src-range from[-to]
Match source IP in the specified range.
[!] --dst-range from[-to]
Match destination IP in the specified range.
length
This module matches the length of the layer-3 payload (e.g. layer-4
packet) f a packet against a specific value or range of values.
[!] --length length[:length]
limit
This module matches at a limited rate using a token bucket filter. A
rule using this extension will match until this limit is reached
(unless the ‘!’ flag is used). It can be used in combination with the
LOG target to give limited logging, for example.
[!] --limit rate[/second|/minute|/hour|/day]
Maximum average matching rate: specified as a number, with an
optional ‘/second’, ‘/minute’, ‘/hour’, or ‘/day’ suffix; the
default is 3/hour.
--limit-burst number
Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not
reached, up to this number; the default is 5.
mac
[!] --mac-source address
Match source MAC address. It must be of the form
XX:XX:XX:XX:XX:XX. Note that this only makes sense for packets
coming from an Ethernet device and entering the PREROUTING,
FORWARD or INPUT chains.
mark
This module matches the netfilter mark field associated with a packet
(which can be set using the MARK target below).
[!] --mark value[/mask]
Matches packets with the given unsigned mark value (if a mask is
specified, this is logically ANDed with the mask before the
comparison).
multiport
This module matches a set of source or destination ports. Up to 15
ports can be specified. A port range (port:port) counts as two ports.
It can only be used in conjunction with -p tcp or -p udp.
[!] --source-ports,--sports port[,port|,port:port]...
Match if the source port is one of the given ports. The flag
--sports is a convenient alias for this option. Multiple ports
or port ranges are separated using a comma, and a port range is
specified using a colon. 53,1024:65535 would therefore match
ports 53 and all from 1024 through 65535.
[!] --destination-ports,--dports port[,port|,port:port]...
Match if the destination port is one of the given ports. The
flag --dports is a convenient alias for this option.
[!] --ports port[,port|,port:port]...
Match if either the source or destination ports are equal to one
of the given ports.
owner
This module attempts to match various characteristics of the packet
creator, for locally generated packets. This match is only valid in the
OUTPUT and POSTROUTING chains. Forwarded packets do not have any socket
associated with them. Packets from kernel threads do have a socket, but
usually no owner.
[!] --uid-owner username
[!] --uid-owner userid[-userid]
Matches if the packet socket’s file structure (if it has one) is
owned by the given user. You may also specify a numerical UID,
or an UID range.
[!] --gid-owner groupname
[!] --gid-owner groupid[-groupid]
Matches if the packet socket’s file structure is owned by the
given group. You may also specify a numerical GID, or a GID
range.
[!] --socket-exists
Matches if the packet is associated with a socket.
physdev
This module matches on the bridge port input and output devices
enslaved to a bridge device. This module is a part of the
infrastructure that enables a transparent bridging IP firewall and is
only useful for kernel versions above version 2.5.44.
[!] --physdev-in name
Name of a bridge port via which a packet is received (only for
packets entering the INPUT, FORWARD and PREROUTING chains). If
the interface name ends in a "+", then any interface which
begins with this name will match. If the packet didn’t arrive
through a bridge device, this packet won’t match this option,
unless ’!’ is used.
[!] --physdev-out name
Name of a bridge port via which a packet is going to be sent
(for packets entering the FORWARD, OUTPUT and POSTROUTING
chains). If the interface name ends in a "+", then any
interface which begins with this name will match. Note that in
the nat and mangle OUTPUT chains one cannot match on the bridge
output port, however one can in the filter OUTPUT chain. If the
packet won’t leave by a bridge device or if it is yet unknown
what the output device will be, then the packet won’t match this
option, unless ’!’ is used.
[!] --physdev-is-in
Matches if the packet has entered through a bridge interface.
[!] --physdev-is-out
Matches if the packet will leave through a bridge interface.
[!] --physdev-is-bridged
Matches if the packet is being bridged and therefore is not
being routed. This is only useful in the FORWARD and
POSTROUTING chains.
pkttype
This module matches the link-layer packet type.
[!] --pkt-type {unicast|broadcast|multicast}
policy
This modules matches the policy used by IPsec for handling a packet.
--dir {in|out}
Used to select whether to match the policy used for
decapsulation or the policy that will be used for encapsulation.
in is valid in the PREROUTING, INPUT and FORWARD chains, out is
valid in the POSTROUTING, OUTPUT and FORWARD chains.
--pol {none|ipsec}
Matches if the packet is subject to IPsec processing.
--strict
Selects whether to match the exact policy or match if any rule
of the policy matches the given policy.
[!] --reqid id
Matches the reqid of the policy rule. The reqid can be specified
with setkey(8) using unique:id as level.
[!] --spi spi
Matches the SPI of the SA.
[!] --proto {ah|esp|ipcomp}
Matches the encapsulation protocol.
[!] --mode {tunnel|transport}
Matches the encapsulation mode.
[!] --tunnel-src addr[/mask]
Matches the source end-point address of a tunnel mode SA. Only
valid with --mode tunnel.
[!] --tunnel-dst addr[/mask]
Matches the destination end-point address of a tunnel mode SA.
Only valid with --mode tunnel.
--next Start the next element in the policy specification. Can only be
used with --strict.
quota
Implements network quotas by decrementing a byte counter with each
packet.
--quota bytes
The quota in bytes.
rateest
The rate estimator can match on estimated rates as collected by the
RATEEST target. It supports matching on absolute bps/pps values,
comparing two rate estimators and matching on the difference between
two rate estimators.
--rateest1 name
Name of the first rate estimator.
--rateest2 name
Name of the second rate estimator (if difference is to be
calculated).
--rateest-delta
Compare difference(s) to given rate(s)
--rateest1-bps value
--rateest2-bps value
Compare bytes per second.
--rateest1-pps value
--rateest2-pps value
Compare packets per second.
[!] --rateest-lt
Match if rate is less than given rate/estimator.
[!] --rateest-gt
Match if rate is greater than given rate/estimator.
[!] --rateest-eq
Match if rate is equal to given rate/estimator.
Example: This is what can be used to route outgoing data connections
from an FTP server over two lines based on the available bandwidth at
the time the data connection was started:
# Estimate outgoing rates
iptables -t mangle -A POSTROUTING -o eth0 -j RATEEST --rateest-name
eth0 --rateest-interval 250ms --rateest-ewma 0.5s
iptables -t mangle -A POSTROUTING -o ppp0 -j RATEEST --rateest-name
ppp0 --rateest-interval 250ms --rateest-ewma 0.5s
# Mark based on available bandwidth
iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper
--helper ftp -m rateest --rateest-delta --rateest1 eth0 --rateest-bps1
2.5mbit --rateest-gt --rateest2 ppp0 --rateest-bps2 2mbit -j CONNMARK
--set-mark 1
iptables -t mangle -A balance -m conntrack --ctstate NEW -m helper
--helper ftp -m rateest --rateest-delta --rateest1 ppp0 --rateest-bps1
2mbit --rateest-gt --rateest2 eth0 --rateest-bps2 2.5mbit -j CONNMARK
--set-mark 2
iptables -t mangle -A balance -j CONNMARK --restore-mark
realm
This matches the routing realm. Routing realms are used in complex
routing setups involving dynamic routing protocols like BGP.
[!] --realm value[/mask]
Matches a given realm number (and optionally mask). If not a
number, value can be a named realm from /etc/iproute2/rt_realms
(mask can not be used in that case).
recent
Allows you to dynamically create a list of IP addresses and then match
against that list in a few different ways.
For example, you can create a "badguy" list out of people attempting to
connect to port 139 on your firewall and then DROP all future packets
from them without considering them.
--name name
Specify the list to use for the commands. If no name is given
then DEFAULT will be used.
[!] --set
This will add the source address of the packet to the list. If
the source address is already in the list, this will update the
existing entry. This will always return success (or failure if !
is passed in).
--rsource
Match/save the source address of each packet in the recent list
table. This is the default.
--rdest
Match/save the destination address of each packet in the recent
list table.
[!] --rcheck
Check if the source address of the packet is currently in the
list.
[!] --update
Like --rcheck, except it will update the "last seen" timestamp
if it matches.
[!] --remove
Check if the source address of the packet is currently in the
list and if so that address will be removed from the list and
the rule will return true. If the address is not found, false is
returned.
[!] --seconds seconds
This option must be used in conjunction with one of --rcheck or
--update. When used, this will narrow the match to only happen
when the address is in the list and was seen within the last
given number of seconds.
--reap reap
This option must be used in conjunction with --seconds. When
used, this will remove entries with the most recent timestamp
older then --seconds since the last packet was received.
[!] --hitcount hits
This option must be used in conjunction with one of --rcheck or
--update. When used, this will narrow the match to only happen
when the address is in the list and packets had been received
greater than or equal to the given value. This option may be
used along with --seconds to create an even narrower match
requiring a certain number of hits within a specific time frame.
--rttl This option may only be used in conjunction with one of --rcheck
or --update. When used, this will narrow the match to only
happen when the address is in the list and the TTL of the
current packet matches that of the packet which hit the --set
rule. This may be useful if you have problems with people faking
their source address in order to DoS you via this module by
disallowing others access to your site by sending bogus packets
to you.
Examples:
iptables -A FORWARD -m recent --name badguy --rcheck --seconds
60 -j DROP
iptables -A FORWARD -p tcp -i eth0 --dport 139 -m recent --name
badguy --set -j DROP
Steve’s ipt_recent website (http://snowman.net/projects/ipt_recent/)
also has some examples of usage.
/proc/net/xt_recent/* are the current lists of addresses and
information about each entry of each list.
Each file in /proc/net/xt_recent/ can be read from to see the current
list or written two using the following commands to modify the list:
echo +addr >/proc/net/xt_recent/DEFAULT
to add addr to the DEFAULT list
echo -addr >/proc/net/xt_recent/DEFAULT
to remove addr from the DEFAULT list
echo / >/proc/net/xt_recent/DEFAULT
to flush the DEFAULT list (remove all entries).
The module itself accepts parameters, defaults shown:
ip_list_tot=100
Number of addresses remembered per table.
ip_pkt_list_tot=20
Number of packets per address remembered.
ip_list_hash_size=0
Hash table size. 0 means to calculate it based on ip_list_tot,
default: 512.
ip_list_perms=0644
Permissions for /proc/net/xt_recent/* files.
ip_list_uid=0
Numerical UID for ownership of /proc/net/xt_recent/* files.
ip_list_gid=0
Numerical GID for ownership of /proc/net/xt_recent/* files.
sctp
[!] --source-port,--sport port[:port]
[!] --destination-port,--dport port[:port]
[!] --chunk-types {all|any|only} chunktype[:flags] [...]
The flag letter in upper case indicates that the flag is to
match if set, in the lower case indicates to match if unset.
Chunk types: DATA INIT INIT_ACK SACK HEARTBEAT HEARTBEAT_ACK
ABORT SHUTDOWN SHUTDOWN_ACK ERROR COOKIE_ECHO COOKIE_ACK
ECN_ECNE ECN_CWR SHUTDOWN_COMPLETE ASCONF ASCONF_ACK
chunk type available flags
DATA U B E u b e
ABORT T t
SHUTDOWN_COMPLETE T t
(lowercase means flag should be "off", uppercase means "on")
Examples:
iptables -A INPUT -p sctp --dport 80 -j DROP
iptables -A INPUT -p sctp --chunk-types any DATA,INIT -j DROP
iptables -A INPUT -p sctp --chunk-types any DATA:Be -j ACCEPT
set
This modules macthes IP sets which can be defined by ipset(8).
[!] --match-set setname flag[,flag]...
where flags are the comma separated list of src and/or dst
specifications and there can be no more than six of them. Hence
the command
iptables -A FORWARD -m set --match-set test src,dst
will match packets, for which (if the set type is ipportmap) the
source address and destination port pair can be found in the
specified set. If the set type of the specified set is single
dimension (for example ipmap), then the command will match
packets for which the source address can be found in the
specified set.
The option --match-set can be replaced by --set if that does not clash
with an option of other extensions.
socket
This matches if an open socket can be found by doing a socket lookup on
the packet.
state
This module, when combined with connection tracking, allows access to
the connection tracking state for this packet.
[!] --state state
Where state is a comma separated list of the connection states
to match. Possible states are INVALID meaning that the packet
could not be identified for some reason which includes running
out of memory and ICMP errors which don’t correspond to any
known connection, ESTABLISHED meaning that the packet is
associated with a connection which has seen packets in both
directions, NEW meaning that the packet has started a new
connection, or otherwise associated with a connection which has
not seen packets in both directions, and RELATED meaning that
the packet is starting a new connection, but is associated with
an existing connection, such as an FTP data transfer, or an ICMP
error.
statistic
This module matches packets based on some statistic condition. It
supports two distinct modes settable with the --mode option.
Supported options:
--mode mode
Set the matching mode of the matching rule, supported modes are
random and nth.
--probability p
Set the probability from 0 to 1 for a packet to be randomly
matched. It works only with the random mode.
--every n
Match one packet every nth packet. It works only with the nth
mode (see also the --packet option).
--packet p
Set the initial counter value (0 <= p <= n-1, default 0) for the
nth mode.
string
This modules matches a given string by using some pattern matching
strategy. It requires a linux kernel >= 2.6.14.
--algo {bm|kmp}
Select the pattern matching strategy. (bm = Boyer-Moore, kmp =
Knuth-Pratt-Morris)
--from offset
Set the offset from which it starts looking for any matching. If
not passed, default is 0.
--to offset
Set the offset from which it starts looking for any matching. If
not passed, default is the packet size.
[!] --string pattern
Matches the given pattern.
[!] --hex-string pattern
Matches the given pattern in hex notation.
tcp
These extensions can be used if ‘--protocol tcp’ is specified. It
provides the following options:
[!] --source-port,--sport port[:port]
Source port or port range specification. This can either be a
service name or a port number. An inclusive range can also be
specified, using the format first:last. If the first port is
omitted, "0" is assumed; if the last is omitted, "65535" is
assumed. If the first port is greater than the second one they
will be swapped. The flag --sport is a convenient alias for
this option.
[!] --destination-port,--dport port[:port]
Destination port or port range specification. The flag --dport
is a convenient alias for this option.
[!] --tcp-flags mask comp
Match when the TCP flags are as specified. The first argument
mask is the flags which we should examine, written as a comma-
separated list, and the second argument comp is a comma-
separated list of flags which must be set. Flags are: SYN ACK
FIN RST URG PSH ALL NONE. Hence the command
iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN
and RST flags unset.
[!] --syn
Only match TCP packets with the SYN bit set and the ACK,RST and
FIN bits cleared. Such packets are used to request TCP
connection initiation; for example, blocking such packets coming
in an interface will prevent incoming TCP connections, but
outgoing TCP connections will be unaffected. It is equivalent
to --tcp-flags SYN,RST,ACK,FIN SYN. If the "!" flag precedes
the "--syn", the sense of the option is inverted.
[!] --tcp-option number
Match if TCP option set.
tcpmss
This matches the TCP MSS (maximum segment size) field of the TCP
header. You can only use this on TCP SYN or SYN/ACK packets, since the
MSS is only negotiated during the TCP handshake at connection startup
time.
[!] --mss value[:value]
Match a given TCP MSS value or range.
time
This matches if the packet arrival time/date is within a given range.
All options are optional, but are ANDed when specified.
--datestart YYYY[-MM[-DD[Thh[:mm[:ss]]]]]
--datestop YYYY[-MM[-DD[Thh[:mm[:ss]]]]]
Only match during the given time, which must be in ISO 8601 "T"
notation. The possible time range is 1970-01-01T00:00:00 to
2038-01-19T04:17:07.
If --datestart or --datestop are not specified, it will default
to 1970-01-01 and 2038-01-19, respectively.
--timestart hh:mm[:ss]
--timestop hh:mm[:ss]
Only match during the given daytime. The possible time range is
00:00:00 to 23:59:59. Leading zeroes are allowed (e.g. "06:03")
and correctly interpreted as base-10.
[!] --monthdays day[,day...]
Only match on the given days of the month. Possible values are 1
to 31. Note that specifying 31 will of course not match on
months which do not have a 31st day; the same goes for 28- or
29-day February.
[!] --weekdays day[,day...]
Only match on the given weekdays. Possible values are Mon, Tue,
Wed, Thu, Fri, Sat, Sun, or values from 1 to 7, respectively.
You may also use two-character variants (Mo, Tu, etc.).
--utc
Interpret the times given for --datestart, --datestop,
--timestart and --timestop to be UTC.
--localtz
Interpret the times given for --datestart, --datestop,
--timestart and --timestop to be local kernel time. (Default)
EXAMPLES. To match on weekends, use:
-m time --weekdays Sa,Su
Or, to match (once) on a national holiday block:
-m time --datestart 2007-12-24 --datestop 2007-12-27
Since the stop time is actually inclusive, you would need the following
stop time to not match the first second of the new day:
-m time --datestart 2007-01-01T17:00 --datestop
2007-01-01T23:59:59
During lunch hour:
-m time --timestart 12:30 --timestop 13:30
The fourth Friday in the month:
-m time --weekdays Fr --monthdays 22,23,24,25,26,27,28
(Note that this exploits a certain mathematical property. It is not
possible to say "fourth Thursday OR fourth Friday" in one rule. It is
possible with multiple rules, though.)
tos
This module matches the 8-bit Type of Service field in the IPv4 header
(i.e. including the "Precedence" bits) or the (also 8-bit) Priority
field in the IPv6 header.
[!] --tos value[/mask]
Matches packets with the given TOS mark value. If a mask is
specified, it is logically ANDed with the TOS mark before the
comparison.
[!] --tos symbol
You can specify a symbolic name when using the tos match for
IPv4. The list of recognized TOS names can be obtained by
calling iptables with -m tos -h. Note that this implies a mask
of 0x3F, i.e. all but the ECN bits.
ttl
This module matches the time to live field in the IP header.
--ttl-eq ttl
Matches the given TTL value.
--ttl-gt ttl
Matches if TTL is greater than the given TTL value.
--ttl-lt ttl
Matches if TTL is less than the given TTL value.
u32
U32 tests whether quantities of up to 4 bytes extracted from a packet
have specified values. The specification of what to extract is general
enough to find data at given offsets from tcp headers or payloads.
[!] --u32 tests
The argument amounts to a program in a small language described
below.
tests := location "=" value | tests "&&" location "=" value
value := range | value "," range
range := number | number ":" number
a single number, n, is interpreted the same as n:n. n:m is interpreted
as the range of numbers >=n and <=m.
location := number | location operator number
operator := "&" | "<<" | ">>" | "@"
The operators &, <<, >> and && mean the same as in C. The = is really
a set membership operator and the value syntax describes a set. The @
operator is what allows moving to the next header and is described
further below.
There are currently some artificial implementation limits on the size
of the tests:
* no more than 10 of "=" (and 9 "&&"s) in the u32 argument
* no more than 10 ranges (and 9 commas) per value
* no more than 10 numbers (and 9 operators) per location
To describe the meaning of location, imagine the following machine that
interprets it. There are three registers:
A is of type char *, initially the address of the IP header
B and C are unsigned 32 bit integers, initially zero
The instructions are:
number B = number;
C = (*(A+B)<<24) + (*(A+B+1)<<16) + (*(A+B+2)<<8) + *(A+B+3)
&number C = C & number
<< number C = C << number
>> number C = C >> number
@number A = A + C; then do the instruction number
Any access of memory outside [skb->data,skb->end] causes the match to
fail. Otherwise the result of the computation is the final value of C.
Whitespace is allowed but not required in the tests. However, the
characters that do occur there are likely to require shell quoting, so
it is a good idea to enclose the arguments in quotes.
Example:
match IP packets with total length >= 256
The IP header contains a total length field in bytes 2-3.
--u32 "0 & 0xFFFF = 0x100:0xFFFF"
read bytes 0-3
AND that with 0xFFFF (giving bytes 2-3), and test whether that
is in the range [0x100:0xFFFF]
Example: (more realistic, hence more complicated)
match ICMP packets with icmp type 0
First test that it is an ICMP packet, true iff byte 9 (protocol)
= 1
--u32 "6 & 0xFF = 1 && ...
read bytes 6-9, use & to throw away bytes 6-8 and compare the
result to 1. Next test that it is not a fragment. (If so, it
might be part of such a packet but we cannot always tell.) N.B.:
This test is generally needed if you want to match anything
beyond the IP header. The last 6 bits of byte 6 and all of byte
7 are 0 iff this is a complete packet (not a fragment).
Alternatively, you can allow first fragments by only testing the
last 5 bits of byte 6.
... 4 & 0x3FFF = 0 && ...
Last test: the first byte past the IP header (the type) is 0.
This is where we have to use the @syntax. The length of the IP
header (IHL) in 32 bit words is stored in the right half of byte
0 of the IP header itself.
... 0 >> 22 & 0x3C @ 0 >> 24 = 0"
The first 0 means read bytes 0-3, >>22 means shift that 22 bits
to the right. Shifting 24 bits would give the first byte, so
only 22 bits is four times that plus a few more bits. &3C then
eliminates the two extra bits on the right and the first four
bits of the first byte. For instance, if IHL=5, then the IP
header is 20 (4 x 5) bytes long. In this case, bytes 0-1 are (in
binary) xxxx0101 yyzzzzzz, >>22 gives the 10 bit value
xxxx0101yy and &3C gives 010100. @ means to use this number as a
new offset into the packet, and read four bytes starting from
there. This is the first 4 bytes of the ICMP payload, of which
byte 0 is the ICMP type. Therefore, we simply shift the value 24
to the right to throw out all but the first byte and compare the
result with 0.
Example:
TCP payload bytes 8-12 is any of 1, 2, 5 or 8
First we test that the packet is a tcp packet (similar to ICMP).
--u32 "6 & 0xFF = 6 && ...
Next, test that it is not a fragment (same as above).
... 0 >> 22 & 0x3C @ 12 >> 26 & 0x3C @ 8 = 1,2,5,8"
0>>22&3C as above computes the number of bytes in the IP header.
@ makes this the new offset into the packet, which is the start
of the TCP header. The length of the TCP header (again in 32 bit
words) is the left half of byte 12 of the TCP header. The
12>>26&3C computes this length in bytes (similar to the IP
header before). "@" makes this the new offset, which is the
start of the TCP payload. Finally, 8 reads bytes 8-12 of the
payload and = checks whether the result is any of 1, 2, 5 or 8.
udp
These extensions can be used if ‘--protocol udp’ is specified. It
provides the following options:
[!] --source-port,--sport port[:port]
Source port or port range specification. See the description of
the --source-port option of the TCP extension for details.
[!] --destination-port,--dport port[:port]
Destination port or port range specification. See the
description of the --destination-port option of the TCP
extension for details.
unclean
This module takes no options, but attempts to match packets which seem
malformed or unusual. This is regarded as experimental.
TARGET EXTENSIONS
iptables can use extended target modules: the following are included in
the standard distribution.
CLASSIFY
This module allows you to set the skb->priority value (and thus
classify the packet into a specific CBQ class).
--set-class major:minor
Set the major and minor class value. The values are always
interpreted as hexadecimal even if no 0x prefix is given.
CLUSTERIP
This module allows you to configure a simple cluster of nodes that
share a certain IP and MAC address without an explicit load balancer in
front of them. Connections are statically distributed between the
nodes in this cluster.
--new Create a new ClusterIP. You always have to set this on the
first rule for a given ClusterIP.
--hashmode mode
Specify the hashing mode. Has to be one of sourceip,
sourceip-sourceport, sourceip-sourceport-destport.
--clustermac mac
Specify the ClusterIP MAC address. Has to be a link-layer
multicast address
--total-nodes num
Number of total nodes within this cluster.
--local-node num
Local node number within this cluster.
--hash-init rnd
Specify the random seed used for hash initialization.
CONNMARK
This module sets the netfilter mark value associated with a connection.
--set-xmark value[/mask]
Zero out the bits given by mask and XOR value into the ctmark.
--save-mark [--nfmask nfmask] [--ctmask ctmask]
Copy the packet mark (nfmark) to the connection mark (ctmark)
using the given masks. The new nfmark value is determined as
follows:
ctmark = (ctmark & ~ctmask) ^ (nfmark & nfmask)
i.e. ctmask defines what bits to clear and nfmask what bits of
the nfmark to XOR into the ctmark. ctmask and nfmask default to
0xFFFFFFFF.
--restore-mark [--nfmask nfmask] [--ctmask ctmask]
Copy the connection mark (ctmark) to the packet mark (nfmark)
using the given masks. The new ctmark value is determined as
follows:
nfmark = (nfmark & ~nfmask) ^ (ctmark & ctmask);
i.e. nfmask defines what bits to clear and ctmask what bits of
the ctmark to XOR into the nfmark. ctmask and nfmask default to
0xFFFFFFFF.
--restore-mark is only valid in the mangle table.
The following mnemonics are available for --set-xmark:
--and-mark bits
Binary AND the ctmark with bits. (Mnemonic for --set-xmark
0/invbits, where invbits is the binary negation of bits.)
--or-mark bits
Binary OR the ctmark with bits. (Mnemonic for --set-xmark
bits/bits.)
--xor-mark bits
Binary XOR the ctmark with bits. (Mnemonic for --set-xmark
bits/0.)
--set-mark value[/mask]
Set the connection mark. If a mask is specified then only those
bits set in the mask are modified.
--save-mark [--mask mask]
Copy the nfmark to the ctmark. If a mask is specified, only
those bits are copied.
--restore-mark [--mask mask]
Copy the ctmark to the nfmark. If a mask is specified, only
those bits are copied. This is only valid in the mangle table.
CONNSECMARK
This module copies security markings from packets to connections (if
unlabeled), and from connections back to packets (also only if
unlabeled). Typically used in conjunction with SECMARK, it is only
valid in the mangle table.
--save If the packet has a security marking, copy it to the connection
if the connection is not marked.
--restore
If the packet does not have a security marking, and the
connection does, copy the security marking from the connection
to the packet.
DNAT
This target is only valid in the nat table, in the PREROUTING and
OUTPUT chains, and user-defined chains which are only called from those
chains. It specifies that the destination address of the packet should
be modified (and all future packets in this connection will also be
mangled), and rules should cease being examined. It takes one type of
option:
--to-destination [ipaddr][-ipaddr][:port[-port]]
which can specify a single new destination IP address, an
inclusive range of IP addresses, and optionally, a port range
(which is only valid if the rule also specifies -p tcp or -p
udp). If no port range is specified, then the destination port
will never be modified. If no IP address is specified then only
the destination port will be modified.
In Kernels up to 2.6.10 you can add several --to-destination
options. For those kernels, if you specify more than one
destination address, either via an address range or multiple
--to-destination options, a simple round-robin (one after
another in cycle) load balancing takes place between these
addresses. Later Kernels (>= 2.6.11-rc1) don’t have the ability
to NAT to multiple ranges anymore.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.22).
--persistent
Gives a client the same source-/destination-address for each
connection. This supersedes the SAME target. Support for
persistent mappings is available from 2.6.29-rc2.
DSCP
This target allows to alter the value of the DSCP bits within the TOS
header of the IPv4 packet. As this manipulates a packet, it can only
be used in the mangle table.
--set-dscp value
Set the DSCP field to a numerical value (can be decimal or hex)
--set-dscp-class class
Set the DSCP field to a DiffServ class.
ECN
This target allows to selectively work around known ECN blackholes. It
can only be used in the mangle table.
--ecn-tcp-remove
Remove all ECN bits from the TCP header. Of course, it can only
be used in conjunction with -p tcp.
LOG
Turn on kernel logging of matching packets. When this option is set
for a rule, the Linux kernel will print some information on all
matching packets (like most IP header fields) via the kernel log (where
it can be read with dmesg or syslogd(8)). This is a "non-terminating
target", i.e. rule traversal continues at the next rule. So if you
want to LOG the packets you refuse, use two separate rules with the
same matching criteria, first using target LOG then DROP (or REJECT).
--log-level level
Level of logging (numeric or see syslog.conf(5)).
--log-prefix prefix
Prefix log messages with the specified prefix; up to 29 letters
long, and useful for distinguishing messages in the logs.
--log-tcp-sequence
Log TCP sequence numbers. This is a security risk if the log is
readable by users.
--log-tcp-options
Log options from the TCP packet header.
--log-ip-options
Log options from the IP packet header.
--log-uid
Log the userid of the process which generated the packet.
MARK
This target is used to set the Netfilter mark value associated with the
packet. The target can only be used in the mangle table. It can, for
example, be used in conjunction with routing based on fwmark (needs
iproute2).
--set-xmark value[/mask]
Zeroes out the bits given by mask and XORs value into the packet
mark ("nfmark"). If mask is omitted, 0xFFFFFFFF is assumed.
--set-mark value[/mask]
Zeroes out the bits given by mask and ORs value into the packet
mark. If mask is omitted, 0xFFFFFFFF is assumed.
The following mnemonics are available:
--and-mark bits
Binary AND the nfmark with bits. (Mnemonic for --set-xmark
0/invbits, where invbits is the binary negation of bits.)
--or-mark bits
Binary OR the nfmark with bits. (Mnemonic for --set-xmark
bits/bits.)
--xor-mark bits
Binary XOR the nfmark with bits. (Mnemonic for --set-xmark
bits/0.)
MASQUERADE
This target is only valid in the nat table, in the POSTROUTING chain.
It should only be used with dynamically assigned IP (dialup)
connections: if you have a static IP address, you should use the SNAT
target. Masquerading is equivalent to specifying a mapping to the IP
address of the interface the packet is going out, but also has the
effect that connections are forgotten when the interface goes down.
This is the correct behavior when the next dialup is unlikely to have
the same interface address (and hence any established connections are
lost anyway). It takes one option:
--to-ports port[-port]
This specifies a range of source ports to use, overriding the
default SNAT source port-selection heuristics (see above). This
is only valid if the rule also specifies -p tcp or -p udp.
--random
Randomize source port mapping If option --random is used then
port mapping will be randomized (kernel >= 2.6.21).
MIRROR
This is an experimental demonstration target which inverts the source
and destination fields in the IP header and retransmits the packet. It
is only valid in the INPUT, FORWARD and PREROUTING chains, and user-
defined chains which are only called from those chains. Note that the
outgoing packets are NOT seen by any packet filtering chains,
connection tracking or NAT, to avoid loops and other problems.
NETMAP
This target allows you to statically map a whole network of addresses
onto another network of addresses. It can only be used from rules in
the nat table.
--to address[/mask]
Network address to map to. The resulting address will be
constructed in the following way: All ’one’ bits in the mask are
filled in from the new ‘address’. All bits that are zero in the
mask are filled in from the original address.
NFLOG
This target provides logging of matching packets. When this target is
set for a rule, the Linux kernel will pass the packet to the loaded
logging backend to log the packet. This is usually used in combination
with nfnetlink_log as logging backend, which will multicast the packet
through a netlink socket to the specified multicast group. One or more
userspace processes may subscribe to the group to receive the packets.
Like LOG, this is a non-terminating target, i.e. rule traversal
continues at the next rule.
--nflog-group nlgroup
The netlink group (1 - 2^32-1) to which packets are (only
applicable for nfnetlink_log). The default value is 0.
--nflog-prefix prefix
A prefix string to include in the log message, up to 64
characters long, useful for distinguishing messages in the logs.
--nflog-range size
The number of bytes to be copied to userspace (only applicable
for nfnetlink_log). nfnetlink_log instances may specify their
own range, this option overrides it.
--nflog-threshold size
Number of packets to queue inside the kernel before sending them
to userspace (only applicable for nfnetlink_log). Higher values
result in less overhead per packet, but increase delay until the
packets reach userspace. The default value is 1.
NFQUEUE
This target is an extension of the QUEUE target. As opposed to QUEUE,
it allows you to put a packet into any specific queue, identified by
its 16-bit queue number.
--queue-num value
This specifies the QUEUE number to use. Valid queue numbers are
0 to 65535. The default value is 0.
It can only be used with Kernel versions 2.6.14 or later, since it
requires the nfnetlink_queue kernel support.
NOTRACK
This target disables connection tracking for all packets matching that
rule.
It can only be used in the raw table.
RATEEST
The RATEEST target collects statistics, performs rate estimation
calculation and saves the results for later evaluation using the
rateest match.
--rateest-name name
Count matched packets into the pool referred to by name, which
is freely choosable.
--rateest-interval amount{s|ms|us}
Rate measurement interval, in seconds, milliseconds or
microseconds.
--rateest-ewmalog value
Rate measurement averaging time constant.
REDIRECT
This target is only valid in the nat table, in the PREROUTING and
OUTPUT chains, and user-defined chains which are only called from those
chains. It redirects the packet to the machine itself by changing the
destination IP to the primary address of the incoming interface
(locally-generated packets are mapped to the 127.0.0.1 address).
--to-ports port[-port]
This specifies a destination port or range of ports to use:
without this, the destination port is never altered. This is
only valid if the rule also specifies -p tcp or -p udp.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.22).
REJECT
This is used to send back an error packet in response to the matched
packet: otherwise it is equivalent to DROP so it is a terminating
TARGET, ending rule traversal. This target is only valid in the INPUT,
FORWARD and OUTPUT chains, and user-defined chains which are only
called from those chains. The following option controls the nature of
the error packet returned:
--reject-with type
The type given can be icmp-net-unreachable,
icmp-host-unreachable, icmp-port-unreachable,
icmp-proto-unreachable, icmp-net-prohibited,
icmp-host-prohibited or icmp-admin-prohibited (*) which return
the appropriate ICMP error message (port-unreachable is the
default). The option tcp-reset can be used on rules which only
match the TCP protocol: this causes a TCP RST packet to be sent
back. This is mainly useful for blocking ident (113/tcp) probes
which frequently occur when sending mail to broken mail hosts
(which won’t accept your mail otherwise).
(*) Using icmp-admin-prohibited with kernels that do not support it
will result in a plain DROP instead of REJECT
SAME
Similar to SNAT/DNAT depending on chain: it takes a range of addresses
(‘--to 1.2.3.4-1.2.3.7’) and gives a client the same
source-/destination-address for each connection.
N.B.: The DNAT target’s --persistent option replaced the SAME target.
--to ipaddr[-ipaddr]
Addresses to map source to. May be specified more than once for
multiple ranges.
--nodst
Don’t use the destination-ip in the calculations when selecting
the new source-ip
--random
Port mapping will be forcibly randomized to avoid attacks based
on port prediction (kernel >= 2.6.21).
SECMARK
This is used to set the security mark value associated with the packet
for use by security subsystems such as SELinux. It is only valid in
the mangle table.
--selctx security_context
SET
This modules adds and/or deletes entries from IP sets which can be
defined by ipset(8).
--add-set setname flag[,flag...]
add the address(es)/port(s) of the packet to the sets
--del-set setname flag[,flag...]
delete the address(es)/port(s) of the packet from the sets
where flags are src and/or dst specifications and there can be
no more than six of them.
SNAT
This target is only valid in the nat table, in the POSTROUTING chain.
It specifies that the source address of the packet should be modified
(and all future packets in this connection will also be mangled), and
rules should cease being examined. It takes one type of option:
--to-source ipaddr[-ipaddr][:port[-port]]
which can specify a single new source IP address, an inclusive
range of IP addresses, and optionally, a port range (which is
only valid if the rule also specifies -p tcp or -p udp). If no
port range is specified, then source ports below 512 will be
mapped to other ports below 512: those between 512 and 1023
inclusive will be mapped to ports below 1024, and other ports
will be mapped to 1024 or above. Where possible, no port
alteration will
In Kernels up to 2.6.10, you can add several --to-source
options. For those kernels, if you specify more than one source
address, either via an address range or multiple --to-source
options, a simple round-robin (one after another in cycle) takes
place between these addresses. Later Kernels (>= 2.6.11-rc1)
don’t have the ability to NAT to multiple ranges anymore.
--random
If option --random is used then port mapping will be randomized
(kernel >= 2.6.21).
--persistent
Gives a client the same source-/destination-address for each
connection. This supersedes the SAME target. Support for
persistent mappings is available from 2.6.29-rc2.
TCPMSS
This target allows to alter the MSS value of TCP SYN packets, to
control the maximum size for that connection (usually limiting it to
your outgoing interface’s MTU minus 40 for IPv4 or 60 for IPv6,
respectively). Of course, it can only be used in conjunction with -p
tcp. It is only valid in the mangle table.
This target is used to overcome criminally braindead ISPs or servers
which block "ICMP Fragmentation Needed" or "ICMPv6 Packet Too Big"
packets. The symptoms of this problem are that everything works fine
from your Linux firewall/router, but machines behind it can never
exchange large packets:
1) Web browsers connect, then hang with no data received.
2) Small mail works fine, but large emails hang.
3) ssh works fine, but scp hangs after initial handshaking.
Workaround: activate this option and add a rule to your firewall
configuration like:
iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN
-j TCPMSS --clamp-mss-to-pmtu
--set-mss value
Explicitly set MSS option to specified value.
--clamp-mss-to-pmtu
Automatically clamp MSS value to (path_MTU - 40 for IPv4; -60
for IPv6).
These options are mutually exclusive.
TCPOPTSTRIP
This target will strip TCP options off a TCP packet. (It will actually
replace them by NO-OPs.) As such, you will need to add the -p tcp
parameters.
--strip-options option[,option...]
Strip the given option(s). The options may be specified by TCP
option number or by symbolic name. The list of recognized
options can be obtained by calling iptables with -j TCPOPTSTRIP
-h.
TOS
This module sets the Type of Service field in the IPv4 header
(including the ´precedence´ bits) or the Priority field in the IPv6
header. Note that TOS shares the same bits as DSCP and ECN. The TOS
target is only valid in the mangle table.
--set-tos value[/mask]
Zeroes out the bits given by mask and XORs value into the
TOS/Priority field. If mask is omitted, 0xFF is assumed.
--set-tos symbol
You can specify a symbolic name when using the TOS target for
IPv4. It implies a mask of 0xFF. The list of recognized TOS
names can be obtained by calling iptables with -j TOS -h.
The following mnemonics are available:
--and-tos bits
Binary AND the TOS value with bits. (Mnemonic for --set-tos
0/invbits, where invbits is the binary negation of bits.)
--or-tos bits
Binary OR the TOS value with bits. (Mnemonic for --set-tos
bits/bits.)
--xor-tos bits
Binary XOR the TOS value with bits. (Mnemonic for --set-tos
bits/0.)
TPROXY
This target is only valid in the mangle table, in the PREROUTING chain
and user-defined chains which are only called from this chain. It
redirects the packet to a local socket without changing the packet
header in any way. It can also change the mark value which can then be
used in advanced routing rules. It takes three options:
--on-port port
This specifies a destination port to use. It is a required
option, 0 means the new destination port is the same as the
original. This is only valid if the rule also specifies -p tcp
or -p udp.
--on-ip address
This specifies a destination address to use. By default the
address is the IP address of the incoming interface. This is
only valid if the rule also specifies -p tcp or -p udp.
--tproxy-mark value[/mask]
Marks packets with the given value/mask. The fwmark value set
here can be used by advanced routing. (Required for transparent
proxying to work: otherwise these packets will get forwarded,
which is probably not what you want.)
TRACE
This target marks packes so that the kernel will log every rule which
match the packets as those traverse the tables, chains, rules. (The
ipt_LOG or ip6t_LOG module is required for the logging.) The packets
are logged with the string prefix: "TRACE:
tablename:chainname:type:rulenum " where type can be "rule" for plain
rule, "return" for implicit rule at the end of a user defined chain and
"policy" for the policy of the built in chains.
It can only be used in the raw table.
TTL
This is used to modify the IPv4 TTL header field. The TTL field
determines how many hops (routers) a packet can traverse until it’s
time to live is exceeded.
Setting or incrementing the TTL field can potentially be very
dangerous, so it should be avoided at any cost.
Don’t ever set or increment the value on packets that leave your local
network! mangle table.
--ttl-set value
Set the TTL value to ‘value’.
--ttl-dec value
Decrement the TTL value ‘value’ times.
--ttl-inc value
Increment the TTL value ‘value’ times.
ULOG
This target provides userspace logging of matching packets. When this
target is set for a rule, the Linux kernel will multicast this packet
through a netlink socket. One or more userspace processes may then
subscribe to various multicast groups and receive the packets. Like
LOG, this is a "non-terminating target", i.e. rule traversal continues
at the next rule.
--ulog-nlgroup nlgroup
This specifies the netlink group (1-32) to which the packet is
sent. Default value is 1.
--ulog-prefix prefix
Prefix log messages with the specified prefix; up to 32
characters long, and useful for distinguishing messages in the
logs.
--ulog-cprange size
Number of bytes to be copied to userspace. A value of 0 always
copies the entire packet, regardless of its size. Default is 0.
--ulog-qthreshold size
Number of packet to queue inside kernel. Setting this value to,
e.g. 10 accumulates ten packets inside the kernel and transmits
them as one netlink multipart message to userspace. Default is
1 (for backwards compatibility).
DIAGNOSTICS
Various error messages are printed to standard error. The exit code is
0 for correct functioning. Errors which appear to be caused by invalid
or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.
BUGS
Bugs? What’s this? ;-) Well, you might want to have a look at
http://bugzilla.netfilter.org/
COMPATIBILITY WITH IPCHAINS
This iptables is very similar to ipchains by Rusty Russell. The main
difference is that the chains INPUT and OUTPUT are only traversed for
packets coming into the local host and originating from the local host
respectively. Hence every packet only passes through one of the three
chains (except loopback traffic, which involves both INPUT and OUTPUT
chains); previously a forwarded packet would pass through all three.
The other main difference is that -i refers to the input interface; -o
refers to the output interface, and both are available for packets
entering the FORWARD chain.
The various forms of NAT have been separated out; iptables is a pure
packet filter when using the default ‘filter’ table, with optional
extension modules. This should simplify much of the previous confusion
over the combination of IP masquerading and packet filtering seen
previously. So the following options are handled differently:
-j MASQ
-M -S
-M -L
There are several other changes in iptables.
SEE ALSO
iptables-save(8), iptables-restore(8), ip6tables(8), ip6tables-save(8),
ip6tables-restore(8), libipq(3).
The packet-filtering-HOWTO details iptables usage for packet filtering,
the NAT-HOWTO details NAT, the netfilter-extensions-HOWTO details the
extensions that are not in the standard distribution, and the
netfilter-hacking-HOWTO details the netfilter internals.
See http://www.netfilter.org/.
AUTHORS
Rusty Russell originally wrote iptables, in early consultation with
Michael Neuling.
Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic
packet selection framework in iptables, then wrote the mangle table,
the owner match, the mark stuff, and ran around doing cool stuff
everywhere.
James Morris wrote the TOS target, and tos match.
Jozsef Kadlecsik wrote the REJECT target.
Harald Welte wrote the ULOG and NFQUEUE target, the new libiptc, as
well as the TTL, DSCP, ECN matches and targets.
The Netfilter Core Team is: Marc Boucher, Martin Josefsson, Yasuyuki
Kozakai, Jozsef Kadlecsik, Patrick McHardy, James Morris, Pablo Neira
Ayuso, Harald Welte and Rusty Russell.
Man page originally written by Herve Eychenne <rv@wallfire.org>.