NAME
groff_tmac - macro files in the roff typesetting system
DESCRIPTION
The roff(7) type-setting system provides a set of macro packages
suitable for special kinds of documents. Each macro package stores its
macros and definitions in a file called the package’s tmac file. The
name is deduced from ‘TroffMACros’.
The tmac files are normal roff source documents, except that they
usually contain only definitions and setup commands, but no text. All
tmac files are kept in a single or a small number of directories, the
tmac directories.
GROFF MACRO PACKAGES
groff provides all classical macro packages, some more full packages,
and some secondary packages for special purposes. Note that it is not
possible to use multiple primary macro packages at the same time;
saying e.g.
sh# groff -m man -m ms foo
or
sh# groff -m man foo -m ms bar
fails. Exception to this is the use of man pages written with either
the mdoc or the man macro package. See below the description of the
andoc.tmac file.
Man Pages
man This is the classical macro package for UNIX manual pages
(man pages); it is quite handy and easy to use; see
groff_man(7).
doc mdoc An alternative macro package for man pages mainly used in
BSD systems; it provides many new features, but it is not the
standard for man pages; see groff_mdoc(7).
andoc mandoc Use this file in case you don’t know whether the man
macros or the mdoc package should be used. Multiple man pages
(in either format) can be handled.
Full Packages
The packages in this section provide a complete set of macros for
writing documents of any kind, up to whole books. They are similar in
functionality; it is a matter of taste which one to use.
me The classical me macro package; see groff_me(7).
mm The semi-classical mm macro package; see groff_mm(7).
mom The new mom macro package, only available in groff. As this is
not based on other packages, it can be freely designed. So it
is expected to become quite a nice, modern macro package. See
groff_mom(7).
ms The classical ms macro package; see groff_ms(7).
Language-specific Packages
cs This file adds support for Czech localization, including the
main macro packages (me, mom, mm, and ms).
Note that cs.tmac sets the input encoding to latin-2.
de den German localization support, including the main macro
packages (me, mom, mm, and ms).
de.tmac selects hyphenation patterns for traditional
orthography, and den.tmac does the same for the new orthography
(‘Rechtschreibreform’). It should be used as the last macro
package on the command line.
fr This file adds support for French localization, including the
main macro packages (me, mom, mm, and ms). Example:
sh# groff -ms -mfr foo.ms > foo.ps
Note that fr.tmac sets the input encoding to latin-9 to get
proper support of the ‘oe’ ligature.
sv Swedish localization support, including the me, mom, and ms
macro packages. Note that Swedish for the mm macros is handled
separately; see groff_mmse(7). It should be used as the last
macro package on the command line.
Input Encodings
latin1 latin2 latin5 latin9 Various input encodings supported directly
by groff. Normally, this macro is loaded at the very beginning
of a document or specified as the first macro argument on the
command line. roff loads latin1 by default at start-up. Note
that these macro packages don’t work on EBCDIC hosts.
cp1047 Encoding support for EBCDIC. On those platforms it is loaded
automatically at start-up. Due to different character ranges
used in roff it doesn’t work on architectures which are based on
ASCII.
Note that it can happen that some input encoding characters are not
available for a particular output device. For example, saying
groff -Tlatin1 -mlatin9 ...
fails if you use the Euro character in the input. Usually, this
limitation is present only for devices which have a limited set of
output glyphs (-Tascii, -Tlatin1); for other devices it is usually
sufficient to install proper fonts which contain the necessary glyphs.
Special Packages
The macro packages in this section are not intended for stand-alone
usage, but can be used to add special functionality to any other macro
package or to plain groff.
60bit Provide some macros for addition, multiplication, and division
of 60bit integers (allowing safe multiplication of 30bit
integers, for example).
ec Switch to the EC and TC font families. To be used with
grodvi(1) – this man page also gives more details of how to use
it.
papersize
This macro file is already loaded at start-up by troff so it
isn’t necessary to call it explicitly. It provides an interface
to set the paper size on the command line with the option
-dpaper=size. Possible values for size are the same as the
predefined papersize values in the DESC file (only lowercase;
see groff_font(5) for more) except a7-d7. An appended l (ell)
character denotes landscape orientation. Examples: a4, c3l,
letterl.
Most output drivers need additional command line switches -p and
-l to override the default paper length and orientation as set
in the driver specific DESC file. For example, use the
following for PS output on A4 paper in landscape orientation:
sh# groff -Tps -dpaper=a4l -P-pa4 -P-l -ms foo.ms > foo.ps
pic This file provides proper definitions for the macros PS and PE,
needed for the pic(1) preprocessor. They center each picture.
Use it only if your macro package doesn’t provide proper
definitions for those two macros (actually, most of them already
do).
pspic A single macro is provided in this file, PSPIC, to include a
PostScript graphic in a document. The following output devices
support inclusion of PS images: -Tps, -Tdvi, -Thtml, and
-Txhtml; for all other devices the image is replaced with a
hollow rectangle of the same size. This macro file is already
loaded at start-up by troff so it isn’t necessary to call it
explicitly.
Syntax:
.PSPIC [-L|-R|-C|-I n] file [width [height]]
file is the name of the PostScript file; width and height give
the desired width and height of the image. If neither a width
nor a height argument is specified, the image’s natural width
(as given in the file’s bounding box) or the current line length
is used as the width, whatever is smaller. The width and height
arguments may have scaling indicators attached; the default
scaling indicator is i. This macro scales the graphic uniformly
in the x and y directions so that it is no more than width wide
and height high. Option -C centers the graphic horizontally,
which is the default. The -L and -R options cause the graphic
to be left-aligned and right-aligned, respectively. The -I
option causes the graphic to be indented by n (default scaling
indicator is m).
For use of .PSPIC within a diversion it is recommended to extend
it with the following code, assuring that the diversion’s width
completely covers the image’s width.
.am PSPIC . vpt 0 \h’(\\n[ps-offset]u + \\n[ps-
deswid]u)’ . sp -1 . vpt 1 ..
ptx A single macro is provided in this file, xx, for formatting
permuted index entries as produces by the GNU ptx(1) program.
In case you need a different formatting, copy the macro into
your document and adapt it to your needs.
trace Use this for tracing macro calls. It is only useful for
debugging. See groff_trace(7).
tty-char
Overrides the definition of standard troff characters and some
groff characters for TTY devices. The optical appearance is
intentionally inferior compared to that of normal TTY formatting
to allow processing with critical equipment.
www Additions of elements known from the HTML format, as used in the
internet (World Wide Web) pages; this includes URL links and
mail addresses; see groff_www(7).
NAMING
Classical roff systems were designed before the conventions of the
modern C getopt(3) call evolved, and used a naming scheme for macro
packages that looks odd to modern eyes. Macro packages were always
included with the option -m; when this option was directly followed by
its argument without an intervening space, this looked like a long
option preceded by a single minus — a sensation in the computer stone
age. To make this invocation form work, classical troff macro packages
used names that started with the letter ‘m’, which was omitted in the
naming of the macro file.
For example, the macro package for the man pages was called man, while
its macro file tmac.an. So it could be activated by the argument an to
option -m, or -man for short.
For similar reasons, macro packages that did not start with an ‘m’ had
a leading ‘m’ added in the documentation and in speech; for example,
the package corresponding to tmac.doc was called mdoc in the
documentation, although a more suitable name would be doc. For, when
omitting the space between the option and its argument, the command
line option for activating this package reads -mdoc.
To cope with all situations, actual versions of groff(1) are smart
about both naming schemes by providing two macro files for the
inflicted macro packages; one with a leading ‘m’ the other one without
it. So in groff, the man macro package may be specified as on of the
following four methods:
sh# groff -m man sh# groff -man sh# groff -mman sh# groff -m an
Recent packages that do not start with ‘m’ do not use an additional ‘m’
in the documentation. For example, the www macro package may be
specified only as one of the two methods:
sh# groff -m www sh# groff -mwww
Obviously, variants like -mmwww would not make much sense.
A second strange feature of classical troff was to name macro files in
the form tmac.name. In modern operating systems, the type of a file is
specified as a postfix, the file name extension. Again, groff copes
with this situation by searching both anything.tmac and tmac.anything
if only anything is specified.
The easiest way to find out which macro packages are available on a
system is to check the man page groff(1), or the contents of the tmac
directories.
In groff, most macro packages are described in man pages called
groff_name(7), with a leading ‘m’ for the classical packages.
INCLUSION
There are several ways to use a macro package in a document. The
classical way is to specify the troff/groff option -m name at run-time;
this makes the contents of the macro package name available. In groff,
the file name.tmac is searched within the tmac path; if not found,
tmac.name is searched for instead.
Alternatively, it is also possible to include a macro file by adding
the request .so filename into the document; the argument must be the
full file name of an existing file, possibly with the directory where
it is kept. In groff, this was improved by the similar request .mso
package, which added searching in the tmac path, just like option -m
does.
Note that in order to resolve the .so and .mso requests, the roff
preprocessor soelim(1) must be called if the files to be included need
preprocessing. This can be done either directly by a pipeline on the
command line or by using the troff/groff option -s. man calls soelim
automatically.
For example, suppose a macro file is stored as
/usr/share/groff/1.20.1/tmac/macros.tmac
and is used in some document called docu.roff.
At run-time, the formatter call for this is
sh# groff -m macros docu.roff
To include the macro file directly in the document either
.mso macros.tmac
is used or
.so /usr/share/groff/1.20.1/tmac/macros.tmac
In both cases, the formatter should be called with option -s to invoke
soelim.
sh# groff -s docu.roff
If you want to write your own groff macro file, call it whatever.tmac
and put it in some directory of the tmac path, see section FILES. Then
documents can include it with the .mso request or the option -m.
WRITING MACROS
A roff(7) document is a text file that is enriched by predefined
formatting constructs, such as requests, escape sequences, strings,
numeric registers, and macros from a macro package. These elements are
described in roff(7).
To give a document a personal style, it is most useful to extend the
existing elements by defining some macros for repeating tasks; the best
place for this is near the beginning of the document or in a separate
file.
Macros without arguments are just like strings. But the full power of
macros reveals when arguments are passed with a macro call. Within the
macro definition, the arguments are available as the escape sequences
\$1, ..., \$9, \$[...], \$*, and \$@, the name under which the macro
was called is in \$0, and the number of arguments is in register
\n[.$]; see groff(7).
Copy-in Mode
The phase when groff reads a macro is called copy-in mode or copy mode
in roff-talk. This is comparable to the C preprocessing phase during
the development of a program written in the C language.
In this phase, groff interprets all backslashes; that means that all
escape sequences in the macro body are interpreted and replaced by
their value. For constant expressions, this is wanted, but strings and
registers that might change between calls of the macro must be
protected from being evaluated. This is most easily done by doubling
the backslash that introduces the escape sequence. This doubling is
most important for the positional parameters. For example, to print
information on the arguments that were passed to the macro to the
terminal, define a macro named ‘.print_args’, say.
.ds midpart was called with .de print_args
. tm \f[I]\\$0\f[] \*[midpart] \\n[.$] arguments: . tm \\$* ..
When calling this macro by
.print_args arg1 arg2
the following text is printed to the terminal:
print_args was called with the following 2 arguments: arg1 arg2
Let’s analyze each backslash in the macro definition. As the
positional parameters and the number of arguments change with each call
of the macro their leading backslash must be doubled, which results in
\\$* and \\[.$]. The same applies to the macro name because it could
be called with an alias name, so \\$0.
On the other hand, midpart is a constant string, it does not change, so
no doubling for \*[midpart]. The \f escape sequences are predefined
groff elements for setting the font within the text. Of course, this
behavior does not change, so no doubling with \f[I] and \f[].
Draft Mode
Writing groff macros is easy when the escaping mechanism is temporarily
disabled. In groff, this is done by enclosing the macro definition(s)
into a pair of .eo and .ec requests. Then the body in the macro
definition is just like a normal part of the document — text enhanced
by calls of requests, macros, strings, registers, etc. For example,
the code above can be written in a simpler way by
.eo .ds midpart was called with .de print_args
. tm \f[I]\$0\f[] \*[midpart] \n[.$] arguments: . tm \$* ..
.ec
Unfortunately, draft mode cannot be used universally. Although it is
good enough for defining normal macros, draft mode fails with advanced
applications, such as indirectly defined strings, registers, etc. An
optimal way is to define and test all macros in draft mode and then do
the backslash doubling as a final step; do not forget to remove the .eo
request.
Tips for Macro Definitions
· Start every line with a dot, for example, by using the groff
request .nop for text lines, or write your own macro that
handles also text lines with a leading dot.
.de Text . if (\\n[.$] == 0) \ . return
. nop \)\\$*\) ..
· Write a comment macro that works both for copy-in and draft
mode; for as escaping is off in draft mode, trouble might occur
when normal comments are used. For example, the following macro
just ignores its arguments, so it acts like a comment line:
.de c .. .c This is like a comment line.
· In long macro definitions, make ample use of comment lines or
almost-empty lines (this is, lines which have a leading dot and
nothing else) for a better structuring.
· To increase readability, use groff’s indentation facility for
requests and macro calls (arbitrary whitespace after the leading
dot).
Diversions
Diversions can be used to implement quite advanced programming
constructs. They are comparable to pointers to large data structures
in the C programming language, but their usage is quite different.
In their simplest form, diversions are multi-line strings, but they get
their power when diversions are used dynamically within macros. The
(formatted) information stored in a diversion can be retrieved by
calling the diversion just like a macro.
Most of the problems arising with diversions can be avoided if you
remain aware of the fact that diversions always store complete lines.
If diversions are used when the line buffer has not been flushed,
strange results are produced; not knowing this, many people get
desperate about diversions. To ensure that a diversion works, line
breaks should be added at the right places. To be on the secure side,
enclose everything that has to do with diversions into a pair of line
breaks; for example, by explicitly using .br requests. This rule
should be applied to diversion definition, both inside and outside, and
to all calls of diversions. This is a bit of overkill, but it works
nicely.
[If you really need diversions which should ignore the current partial
line, use environments to save the current partial line and/or use the
.box request.]
The most powerful feature using diversions is to start a diversion
within a macro definition and end it within another macro. Then
everything between each call of this macro pair is stored within the
diversion and can be manipulated from within the macros.
FILES
All macro names must be named name.tmac to fully use the tmac
mechanism. tmac.name as with classical packages is possible as well,
but deprecated.
The macro files are kept in the tmac directories; a colon separated
list of these constitutes the tmac path.
The search sequence for macro files is (in that order):
· the directories specified with troff/groff’s -M command line
option
· the directories given in the $GROFF_TMAC_PATH environment
variable
· the current directory (only if in unsafe mode, which is enabled
by the -U command line switch)
· the home directory
· a platform-specific directory, being
/usr/lib/groff/site-tmac
in this installation
· a site-specific (platform-independent) directory, being
/usr/share/groff/site-tmac
in this installation
· the main tmac directory, being
/usr/share/groff/1.20.1/tmac
in this installation
ENVIRONMENT
$GROFF_TMAC_PATH
A colon separated list of additional tmac directories in which
to search for macro files. See the previous section for a
detailed description.
AUTHOR
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009 Free
Software Foundation, Inc.
This document is distributed under the terms of the FDL (GNU Free
Documentation License) version 1.3 or later. You should have received
a copy of the FDL on your system, it is also available on-line at the
GNU copyleft site
This document is part of groff, the GNU roff distribution. It was
written by Bernd Warken it is maintained by Werner Lemberg
SEE ALSO
A complete reference for all parts of the groff system is found in the
groff info(1) file.
groff(1)
an overview of the groff system.
groff_man(7),
groff_mdoc(7), groff_me(7), groff_mm(7), groff_mom(7),
groff_ms(7), groff_trace(7), groff_www(7). the groff tmac macro
packages.
groff(7)
the groff language.
The Filesystem Hierarchy Standard is available at the FHS web site