NAME
md - Multiple Device driver aka Linux Software RAID
SYNOPSIS
/dev/mdn
/dev/md/n
DESCRIPTION
The md driver provides virtual devices that are created from one or
more independent underlying devices. This array of devices often
contains redundancy and the devices are often disk drives, hence the
acronym RAID which stands for a Redundant Array of Independent Disks.
md supports RAID levels 1 (mirroring), 4 (striped array with parity
device), 5 (striped array with distributed parity information), 6
(striped array with distributed dual redundancy information), and 10
(striped and mirrored). If some number of underlying devices fails
while using one of these levels, the array will continue to function;
this number is one for RAID levels 4 and 5, two for RAID level 6, and
all but one (N-1) for RAID level 1, and dependent on configuration for
level 10.
md also supports a number of pseudo RAID (non-redundant) configurations
including RAID0 (striped array), LINEAR (catenated array), MULTIPATH (a
set of different interfaces to the same device), and FAULTY (a layer
over a single device into which errors can be injected).
MD SUPER BLOCK
Each device in an array may have a superblock which records information
about the structure and state of the array. This allows the array to
be reliably re-assembled after a shutdown.
From Linux kernel version 2.6.10, md provides support for two different
formats of this superblock, and other formats can be added. Prior to
this release, only one format is supported.
The common format — known as version 0.90 — has a superblock that is 4K
long and is written into a 64K aligned block that starts at least 64K
and less than 128K from the end of the device (i.e. to get the address
of the superblock round the size of the device down to a multiple of
64K and then subtract 64K). The available size of each device is the
amount of space before the super block, so between 64K and 128K is lost
when a device in incorporated into an MD array. This superblock stores
multi-byte fields in a processor-dependent manner, so arrays cannot
easily be moved between computers with different processors.
The new format — known as version 1 — has a superblock that is normally
1K long, but can be longer. It is normally stored between 8K and 12K
from the end of the device, on a 4K boundary, though variations can be
stored at the start of the device (version 1.1) or 4K from the start of
the device (version 1.2). This superblock format stores multibyte data
in a processor-independent format and supports up to hundreds of
component devices (version 0.90 only supports 28).
The superblock contains, among other things:
LEVEL The manner in which the devices are arranged into the array
(linear, raid0, raid1, raid4, raid5, raid10, multipath).
UUID a 128 bit Universally Unique Identifier that identifies the
array that contains this device.
When a version 0.90 array is being reshaped (e.g. adding extra
devices to a RAID5), the version number is temporarily set to
0.91. This ensures that if the reshape process is stopped in
the middle (e.g. by a system crash) and the machine boots into
an older kernel that does not support reshaping, then the array
will not be assembled (which would cause data corruption) but
will be left untouched until a kernel that can complete the
reshape processes is used.
ARRAYS WITHOUT SUPERBLOCKS
While it is usually best to create arrays with superblocks so that they
can be assembled reliably, there are some circumstances when an array
without superblocks is preferred. These include:
LEGACY ARRAYS
Early versions of the md driver only supported Linear and Raid0
configurations and did not use a superblock (which is less
critical with these configurations). While such arrays should
be rebuilt with superblocks if possible, md continues to support
them.
FAULTY Being a largely transparent layer over a different device, the
FAULTY personality doesn’t gain anything from having a
superblock.
MULTIPATH
It is often possible to detect devices which are different paths
to the same storage directly rather than having a distinctive
superblock written to the device and searched for on all paths.
In this case, a MULTIPATH array with no superblock makes sense.
RAID1 In some configurations it might be desired to create a raid1
configuration that does not use a superblock, and to maintain
the state of the array elsewhere. While not encouraged for
general us, it does have special-purpose uses and is supported.
LINEAR
A linear array simply catenates the available space on each drive to
form one large virtual drive.
One advantage of this arrangement over the more common RAID0
arrangement is that the array may be reconfigured at a later time with
an extra drive, so the array is made bigger without disturbing the data
that is on the array. This can even be done on a live array.
If a chunksize is given with a LINEAR array, the usable space on each
device is rounded down to a multiple of this chunksize.
RAID0
A RAID0 array (which has zero redundancy) is also known as a striped
array. A RAID0 array is configured at creation with a Chunk Size which
must be a power of two, and at least 4 kibibytes.
The RAID0 driver assigns the first chunk of the array to the first
device, the second chunk to the second device, and so on until all
drives have been assigned one chunk. This collection of chunks forms a
stripe. Further chunks are gathered into stripes in the same way, and
are assigned to the remaining space in the drives.
If devices in the array are not all the same size, then once the
smallest device has been exhausted, the RAID0 driver starts collecting
chunks into smaller stripes that only span the drives which still have
remaining space.
RAID1
A RAID1 array is also known as a mirrored set (though mirrors tend to
provide reflected images, which RAID1 does not) or a plex.
Once initialised, each device in a RAID1 array contains exactly the
same data. Changes are written to all devices in parallel. Data is
read from any one device. The driver attempts to distribute read
requests across all devices to maximise performance.
All devices in a RAID1 array should be the same size. If they are not,
then only the amount of space available on the smallest device is used
(any extra space on other devices is wasted).
Note that the read balancing done by the driver does not make the RAID1
performance profile be the same as for RAID0; a single stream of
sequential input will not be accelerated (e.g. a single dd), but
multiple sequential streams or a random workload will use more than one
spindle. In theory, having an N-disk RAID1 will allow N sequential
threads to read from all disks.
RAID4
A RAID4 array is like a RAID0 array with an extra device for storing
parity. This device is the last of the active devices in the array.
Unlike RAID0, RAID4 also requires that all stripes span all drives, so
extra space on devices that are larger than the smallest is wasted.
When any block in a RAID4 array is modified, the parity block for that
stripe (i.e. the block in the parity device at the same device offset
as the stripe) is also modified so that the parity block always
contains the "parity" for the whole stripe. I.e. its content is
equivalent to the result of performing an exclusive-or operation
between all the data blocks in the stripe.
This allows the array to continue to function if one device fails. The
data that was on that device can be calculated as needed from the
parity block and the other data blocks.
RAID5
RAID5 is very similar to RAID4. The difference is that the parity
blocks for each stripe, instead of being on a single device, are
distributed across all devices. This allows more parallelism when
writing, as two different block updates will quite possibly affect
parity blocks on different devices so there is less contention.
This also allows more parallelism when reading, as read requests are
distributed over all the devices in the array instead of all but one.
RAID6
RAID6 is similar to RAID5, but can handle the loss of any two devices
without data loss. Accordingly, it requires N+2 drives to store N
drives worth of data.
The performance for RAID6 is slightly lower but comparable to RAID5 in
normal mode and single disk failure mode. It is very slow in dual disk
failure mode, however.
RAID10
RAID10 provides a combination of RAID1 and RAID0, and is sometimes
known as RAID1+0. Every datablock is duplicated some number of times,
and the resulting collection of datablocks are distributed over
multiple drives.
When configuring a RAID10 array, it is necessary to specify the number
of replicas of each data block that are required (this will normally be
2) and whether the replicas should be ’near’, ’offset’ or ’far’. (Note
that the ’offset’ layout is only available from 2.6.18).
When ’near’ replicas are chosen, the multiple copies of a given chunk
are laid out consecutively across the stripes of the array, so the two
copies of a datablock will likely be at the same offset on two adjacent
devices.
When ’far’ replicas are chosen, the multiple copies of a given chunk
are laid out quite distant from each other. The first copy of all data
blocks will be striped across the early part of all drives in RAID0
fashion, and then the next copy of all blocks will be striped across a
later section of all drives, always ensuring that all copies of any
given block are on different drives.
The ’far’ arrangement can give sequential read performance equal to
that of a RAID0 array, but at the cost of degraded write performance.
When ’offset’ replicas are chosen, the multiple copies of a given chunk
are laid out on consecutive drives and at consecutive offsets.
Effectively each stripe is duplicated and the copies are offset by one
device. This should give similar read characteristics to ’far’ if a
suitably large chunk size is used, but without as much seeking for
writes.
It should be noted that the number of devices in a RAID10 array need
not be a multiple of the number of replica of each data block; however,
there must be at least as many devices as replicas.
If, for example, an array is created with 5 devices and 2 replicas,
then space equivalent to 2.5 of the devices will be available, and
every block will be stored on two different devices.
Finally, it is possible to have an array with both ’near’ and ’far’
copies. If an array is configured with 2 near copies and 2 far copies,
then there will be a total of 4 copies of each block, each on a
different drive. This is an artifact of the implementation and is
unlikely to be of real value.
MULTIPATH
MULTIPATH is not really a RAID at all as there is only one real device
in a MULTIPATH md array. However there are multiple access points
(paths) to this device, and one of these paths might fail, so there are
some similarities.
A MULTIPATH array is composed of a number of logically different
devices, often fibre channel interfaces, that all refer the the same
real device. If one of these interfaces fails (e.g. due to cable
problems), the multipath driver will attempt to redirect requests to
another interface.
FAULTY
The FAULTY md module is provided for testing purposes. A faulty array
has exactly one component device and is normally assembled without a
superblock, so the md array created provides direct access to all of
the data in the component device.
The FAULTY module may be requested to simulate faults to allow testing
of other md levels or of filesystems. Faults can be chosen to trigger
on read requests or write requests, and can be transient (a subsequent
read/write at the address will probably succeed) or persistent
(subsequent read/write of the same address will fail). Further, read
faults can be "fixable" meaning that they persist until a write request
at the same address.
Fault types can be requested with a period. In this case, the fault
will recur repeatedly after the given number of requests of the
relevant type. For example if persistent read faults have a period of
100, then every 100th read request would generate a fault, and the
faulty sector would be recorded so that subsequent reads on that sector
would also fail.
There is a limit to the number of faulty sectors that are remembered.
Faults generated after this limit is exhausted are treated as
transient.
The list of faulty sectors can be flushed, and the active list of
failure modes can be cleared.
UNCLEAN SHUTDOWN
When changes are made to a RAID1, RAID4, RAID5, RAID6, or RAID10 array
there is a possibility of inconsistency for short periods of time as
each update requires at least two block to be written to different
devices, and these writes probably won’t happen at exactly the same
time. Thus if a system with one of these arrays is shutdown in the
middle of a write operation (e.g. due to power failure), the array may
not be consistent.
To handle this situation, the md driver marks an array as "dirty"
before writing any data to it, and marks it as "clean" when the array
is being disabled, e.g. at shutdown. If the md driver finds an array
to be dirty at startup, it proceeds to correct any possibly
inconsistency. For RAID1, this involves copying the contents of the
first drive onto all other drives. For RAID4, RAID5 and RAID6 this
involves recalculating the parity for each stripe and making sure that
the parity block has the correct data. For RAID10 it involves copying
one of the replicas of each block onto all the others. This process,
known as "resynchronising" or "resync" is performed in the background.
The array can still be used, though possibly with reduced performance.
If a RAID4, RAID5 or RAID6 array is degraded (missing at least one
drive, two for RAID6) when it is restarted after an unclean shutdown,
it cannot recalculate parity, and so it is possible that data might be
undetectably corrupted. The 2.4 md driver does not alert the operator
to this condition. The 2.6 md driver will fail to start an array in
this condition without manual intervention, though this behaviour can
be overridden by a kernel parameter.
RECOVERY
If the md driver detects a write error on a device in a RAID1, RAID4,
RAID5, RAID6, or RAID10 array, it immediately disables that device
(marking it as faulty) and continues operation on the remaining
devices. If there are spare drives, the driver will start recreating
on one of the spare drives the data which was on that failed drive,
either by copying a working drive in a RAID1 configuration, or by doing
calculations with the parity block on RAID4, RAID5 or RAID6, or by
finding and copying originals for RAID10.
In kernels prior to about 2.6.15, a read error would cause the same
effect as a write error. In later kernels, a read-error will instead
cause md to attempt a recovery by overwriting the bad block. i.e. it
will find the correct data from elsewhere, write it over the block that
failed, and then try to read it back again. If either the write or the
re-read fail, md will treat the error the same way that a write error
is treated, and will fail the whole device.
While this recovery process is happening, the md driver will monitor
accesses to the array and will slow down the rate of recovery if other
activity is happening, so that normal access to the array will not be
unduly affected. When no other activity is happening, the recovery
process proceeds at full speed. The actual speed targets for the two
different situations can be controlled by the speed_limit_min and
speed_limit_max control files mentioned below.
BITMAP WRITE-INTENT LOGGING
From Linux 2.6.13, md supports a bitmap based write-intent log. If
configured, the bitmap is used to record which blocks of the array may
be out of sync. Before any write request is honoured, md will make
sure that the corresponding bit in the log is set. After a period of
time with no writes to an area of the array, the corresponding bit will
be cleared.
This bitmap is used for two optimisations.
Firstly, after an unclean shutdown, the resync process will consult the
bitmap and only resync those blocks that correspond to bits in the
bitmap that are set. This can dramatically reduce resync time.
Secondly, when a drive fails and is removed from the array, md stops
clearing bits in the intent log. If that same drive is re-added to the
array, md will notice and will only recover the sections of the drive
that are covered by bits in the intent log that are set. This can
allow a device to be temporarily removed and reinserted without causing
an enormous recovery cost.
The intent log can be stored in a file on a separate device, or it can
be stored near the superblocks of an array which has superblocks.
It is possible to add an intent log to an active array, or remove an
intent log if one is present.
In 2.6.13, intent bitmaps are only supported with RAID1. Other levels
with redundancy are supported from 2.6.15.
WRITE-BEHIND
From Linux 2.6.14, md supports WRITE-BEHIND on RAID1 arrays.
This allows certain devices in the array to be flagged as write-mostly.
MD will only read from such devices if there is no other option.
If a write-intent bitmap is also provided, write requests to write-
mostly devices will be treated as write-behind requests and md will not
wait for writes to those requests to complete before reporting the
write as complete to the filesystem.
This allows for a RAID1 with WRITE-BEHIND to be used to mirror data
over a slow link to a remote computer (providing the link isn’t too
slow). The extra latency of the remote link will not slow down normal
operations, but the remote system will still have a reasonably up-to-
date copy of all data.
RESTRIPING
Restriping, also known as Reshaping, is the processes of re-arranging
the data stored in each stripe into a new layout. This might involve
changing the number of devices in the array (so the stripes are wider),
changing the chunk size (so stripes are deeper or shallower), or
changing the arrangement of data and parity (possibly changing the raid
level, e.g. 1 to 5 or 5 to 6).
As of Linux 2.6.17, md can reshape a raid5 array to have more devices.
Other possibilities may follow in future kernels.
During any stripe process there is a ’critical section’ during which
live data is being overwritten on disk. For the operation of
increasing the number of drives in a raid5, this critical section
covers the first few stripes (the number being the product of the old
and new number of devices). After this critical section is passed,
data is only written to areas of the array which no longer hold live
data — the live data has already been located away.
md is not able to ensure data preservation if there is a crash (e.g.
power failure) during the critical section. If md is asked to start an
array which failed during a critical section of restriping, it will
fail to start the array.
To deal with this possibility, a user-space program must
· Disable writes to that section of the array (using the sysfs
interface),
· take a copy of the data somewhere (i.e. make a backup),
· allow the process to continue and invalidate the backup and restore
write access once the critical section is passed, and
· provide for restoring the critical data before restarting the array
after a system crash.
mdadm versions from 2.4 do this for growing a RAID5 array.
For operations that do not change the size of the array, like simply
increasing chunk size, or converting RAID5 to RAID6 with one extra
device, the entire process is the critical section. In this case, the
restripe will need to progress in stages, as a section is suspended,
backed up, restriped, and released; this is not yet implemented.
SYSFS INTERFACE
Each block device appears as a directory in sysfs (which is usually
mounted at /sys). For MD devices, this directory will contain a
subdirectory called md which contains various files for providing
access to information about the array.
This interface is documented more fully in the file
Documentation/md.txt which is distributed with the kernel sources.
That file should be consulted for full documentation. The following
are just a selection of attribute files that are available.
md/sync_speed_min
This value, if set, overrides the system-wide setting in
/proc/sys/dev/raid/speed_limit_min for this array only. Writing
the value system to this file will cause the system-wide setting
to have effect.
md/sync_speed_max
This is the partner of md/sync_speed_min and overrides
/proc/sys/dev/raid/spool_limit_max described below.
md/sync_action
This can be used to monitor and control the resync/recovery
process of MD. In particular, writing "check" here will cause
the array to read all data block and check that they are
consistent (e.g. parity is correct, or all mirror replicas are
the same). Any discrepancies found are NOT corrected.
A count of problems found will be stored in md/mismatch_count.
Alternately, "repair" can be written which will cause the same
check to be performed, but any errors will be corrected.
Finally, "idle" can be written to stop the check/repair process.
md/stripe_cache_size
This is only available on RAID5 and RAID6. It records the size
(in pages per device) of the stripe cache which is used for
synchronising all read and write operations to the array. The
default is 128. Increasing this number can increase performance
in some situations, at some cost in system memory.
KERNEL PARAMETERS
The md driver recognised several different kernel parameters.
raid=noautodetect
This will disable the normal detection of md arrays that happens
at boot time. If a drive is partitioned with MS-DOS style
partitions, then if any of the 4 main partitions has a partition
type of 0xFD, then that partition will normally be inspected to
see if it is part of an MD array, and if any full arrays are
found, they are started. This kernel parameter disables this
behaviour.
raid=partitionable
raid=part
These are available in 2.6 and later kernels only. They
indicate that autodetected MD arrays should be created as
partitionable arrays, with a different major device number to
the original non-partitionable md arrays. The device number is
listed as mdp in /proc/devices.
md_mod.start_ro=1
This tells md to start all arrays in read-only mode. This is a
soft read-only that will automatically switch to read-write on
the first write request. However until that write request,
nothing is written to any device by md, and in particular, no
resync or recovery operation is started.
md_mod.start_dirty_degraded=1
As mentioned above, md will not normally start a RAID4, RAID5,
or RAID6 that is both dirty and degraded as this situation can
imply hidden data loss. This can be awkward if the root
filesystem is affected. Using this module parameter allows such
arrays to be started at boot time. It should be understood that
there is a real (though small) risk of data corruption in this
situation.
md=n,dev,dev,...
md=dn,dev,dev,...
This tells the md driver to assemble /dev/md n from the listed
devices. It is only necessary to start the device holding the
root filesystem this way. Other arrays are best started once
the system is booted.
In 2.6 kernels, the d immediately after the = indicates that a
partitionable device (e.g. /dev/md/d0) should be created rather
than the original non-partitionable device.
md=n,l,c,i,dev...
This tells the md driver to assemble a legacy RAID0 or LINEAR
array without a superblock. n gives the md device number, l
gives the level, 0 for RAID0 or -1 for LINEAR, c gives the chunk
size as a base-2 logarithm offset by twelve, so 0 means 4K, 1
means 8K. i is ignored (legacy support).
FILES
/proc/mdstat
Contains information about the status of currently running
array.
/proc/sys/dev/raid/speed_limit_min
A readable and writable file that reflects the current "goal"
rebuild speed for times when non-rebuild activity is current on
an array. The speed is in Kibibytes per second, and is a per-
device rate, not a per-array rate (which means that an array
with more disks will shuffle more data for a given speed). The
default is 100.
/proc/sys/dev/raid/speed_limit_max
A readable and writable file that reflects the current "goal"
rebuild speed for times when no non-rebuild activity is current
on an array. The default is 100,000.
SEE ALSO
mdadm(8), mkraid(8).