NAME
libppm - functions to support portable pixmap (PPM) programs
SYNOPSIS
#include <ppm.h>
void ppm_init( int *argcP, char *argv[] );
pixel ** ppm_allocarray( int cols, int rows );
pixel * ppm_allocrow( int cols );
void ppm_freearray( pixel **pixels, int rows );
void ppm_freerow( pixel *pixelrow);
void ppm_readppminit( FILE *fp, int *colsP, int *rowsP, pixval
*maxvalP, int *formatP );
void ppm_readppmrow( FILE *fp, pixel *pixelrow, int cols, pixval
maxval, int format );
pixel ** ppm_readppm( FILE *fp, int *colsP, int *rowsP, pixvalP
*maxvalP );
void ppm_writeppminit( FILE * fp , int cols, int rows, pixval maxval,
int forceplain );
void ppm_writeppmrow( FILE *fp, pixel *pixelrow, int cols, pixval
maxval, int forceplain );
void ppm_writeppm( FILE *fp, pixel ** pixels, int cols, int rows,
pixval maxval, int forceplain );
void ppm_writeppm( FILE *fp, pixel **pixels, int cols, int rows, pixval
maxval, int forceplain );
void ppm_nextimage( FILE *file, int * const eofP);
void ppm_check( FILE * file, const enum pm_check_type check_type, const
int format, const int cols, const int rows, const int maxval,
enum pm_check_code * const retval);
typedef ... pixel; typedef ... pixval;
#define PPM_MAXMAXVAL ...
#define PPM_OVERALLMAXVAL ...
#define PPM_FORMAT ...
#define RPPM_FORMAT ...
#define PPM_TYPE PPM_FORMAT
#define PPM_FORMAT_TYPE(format) ...
extern pixval ppm_pbmmaxval;
pixval PPM_GETR( pixel p) pixval PPM_GETG( pixel p) pixval PPM_GETB(
pixel p)
void PPM_ASSIGN( pixel p, pixval red, pixval grn, pixval blu)
int PPM_EQUAL( pixel p, pixel q)
void PPM_DEPTH( pixel newp, pixel p, pixval oldmaxval, pixval
newmaxval)
float PPM_LUMIN( pixel p)
float PPM_CHROM_R( pixel p)
float PPM_CHROM_B( pixel p)
pixel ppm_parsecolor( char *colorname, pixval maxval)
char * ppm_colorname( pixel *colorP, pixval maxval, int hexok)
DESCRIPTION
TYPES AND CONSTANTS
Each pixel contains three pixvals, each of which should contain only
the values between 0 and PPM_MAXMAXVAL. ppm_pbmmaxval is the maxval
used when a PPM program reads a PBM file. Normally it is 1; however,
for some programs, a larger value gives better results.
MANIPULATING PIXELS
The macros PPM_GETR, PPM_GETG, and PPM_GETB retrieve the red, green, or
blue sample, respectively, from the given pixel.
The PPM_ASSIGN macro assigns the given values to the red, green, and
blue samples of the given pixel.
The PPM_EQUAL macro tests two pixels for equality.
The PPM_DEPTH macro scales the colors of pixel p according the old and
new maxvals and assigns the new values to newp. It is intended to make
writing ppmtowhatever easier.
The PPM_LUMIN, PPM_CHROM_R, and PPM_CHROM_B, macros determine the
luminance, red chrominance, and blue chrominance, respectively, of the
pixel p. The scale of all these values is the same as the scale of the
input samples (i.e. 0 to maxval for luminance, -maxval/2 to maxval/2
for chrominance).
Note that the macros do it by floating point multiplication. If you
are computing these values over an entire image, it may be
significantly faster to do it with multiplication tables instead.
Compute all the possible products once up front, then for each pixel,
just look up the products in the tables.
INITIALIZATION
All PPM programs must call ppm_init() just after invocation, before
they process their arguments.
MEMORY MANAGEMENT
ppm_allocarray() allocates an array of pixels.
ppm_allocrow() allocates a row of the given number of pixels.
ppm_freearray() frees the array allocated with ppm_allocarray()
containing the given number of rows.
ppm_freerow() frees a row of pixelss allocated with ppm_allocrow().
READING FILES
If a function in this section is called on a PBM or PGM format file, it
translates the PBM or PGM file into a PPM file on the fly and functions
as if it were called on the equivalent PPM file. The format value
returned by ppm_readppminit() is, however, not translated. It
represents the actual format of the PBM or PGM file.
ppm_readppminit() reads the header of a PPM file, returning all the
information from the header and leaving the file positioned just after
the header.
ppm_readppmrow() reads a row of pixels into the pixelrow array.
format, cols, and maxval are the values returned by ppm_readppminit().
ppm_readppm() reads an entire PPM image into memory, returning the
allocated array as its return value and returning the information from
the header as rows, cols, and maxval. This function combines
ppm_readppminit(), ppm_allocarray(), and ppm_readppmrow().
WRITING FILES
ppm_writeppminit() writes the header for a PPM file and leaves it
positioned just after the header.
forceplain is a logical value that tells ppm_writeppminit() to write a
header for a plain PPM format file, as opposed to a raw PPM format
file.
ppm_writeppmrow() writes the row pixelrow to a PPM file. For
meaningful results, cols, maxval, and forceplain must be the same as
was used with ppm_writeppminit().
ppm_writeppm() write the header and all data for a PPM image. This
function combines ppm_writeppminit() and ppm_writeppmrow().
MISCELLANEOUS
ppm_nextimage() positions a PPM input file to the next image in it (so
that a subsequent ppm_readppminit() reads its header).
ppm_nextimage() is analogous to pbm_nextimage(), but works on PPM, PGM,
and PBM files.
ppm_check() checks for the common file integrity error where the file
is the wrong size to contain all the image data.
ppm_check() is analogous to pbm_check(), but works on PPM, PGM, and PBM
files.
COLOR NAMES
ppm_parsecolor() Interprets a color specification and returns a pixel
of the color that it indicates. The color specification is ASCII text,
in one of three formats: 1) a name, as defined in the system’s
X11-style color names file (e.g. rgb.txt). 2) an X11-style
hexadecimal triple: #rgb, #rrggbb, #rrrgggbbb, or #rrrrggggbbbb. 3) A
triplet of decimal floating point numbers from 0.0 to 1.0, representing
red, green, and blue intensities respectively, separated by commas.
E.g. "1.0, 0.5, .25".
If the color specification does not conform to any of these formats,
including the case that it is a name, but is not in the rgb.txt
database, ppm_parsecolor() exits the program via pm_error().
ppm_colorname() Returns a string that describes the color of the given
pixel. If an X11-style color names file (e.g. rgb.txt) is available
and the color appears in it, ppm_colorname() returns the name of the
color from the file. If the color does not appear in a X11-style color
file and hexok is true, ppm_colorname() returns a hexadecimal color
specification triple (#rrggbb). If a X11-style color file is available
but the color does not appear in it and hexok is false, ppm_colorname()
returns the name of the closest matching color in the color file.
Finally, if their is no X11-style color file available and hexok is
false, ppm_colorname() fails and exits the program with an error
message.
The string returned is in static libppm library storage which is
overwritten by every call to ppm_colorname().
COLOR INDEXING
Sometimes in processing images, you want to associate a value with a
particular color. Most often, that’s because you’re generating a color
mapped graphics format. In a color mapped graphics format, the raster
contains small numbers, and the file contains a color map that tells
what color each of those small numbers refers to. If your image has
only 256 colors, but each color takes 24 bits to describe, this can
make your output file much smaller than a straightforward RGB raster
would.
So, continuing the above example, say you have a pixel value for
chartreuse and in your output file and you are going to represent
chartreuse by the number 12. You need a data structure that allows
your program quickly to find out that the number for a chartreuse pixel
is 12. Netpbm’s color indexing data types and functions give you that.
colorhash_table is a C data type that associates an integer with each
of an arbitrary number of colors. It is a hash table, so it uses far
less space than an array indexed by the color’s RGB values would.
The problem with a colorhash_table is that you can only look things up
in it. You can’t find out what colors are in it. So Netpbm has
another data type for representing the same information, the poorly but
historically named colorhist_vector. A colorhist_vector is just an
array. Each entry represents a color and contains the color’s value
(as a pixel) and the integer value associated with it. The entries are
filled in starting with subscript 0 and going consecutively up for the
number of colors in the histogram.
(The reason the name is poor is because a color histogram is only one
of many things that could be represented by it).
colorhash_table ppm_alloccolorhash()
This creates a colorhash_table using dynamically allocated storage.
There are no colors in it. If there is not enough storage, it exits
the program with an error message.
void ppm_freecolorhash()
This destroys a ppm_freecolorhash and frees all the storage associated
with it.
int ppm_addtocolorhash( colorhash_table cht, const pixel * const
colorP, const int value)
This adds the specified color to the specified colorhash_table and
associates the specified value with it.
You must ensure that the color you are adding isn’t already present in
the colorhash_table.
There is no way to update an entry or delete an entry from a
colorhash_table.
int ppm_lookupcolor( const colorhash_table cht, const pixel * const
colorP )
This looks up the specified color in the specified colorhash_table. It
returns the integer value associated with that color.
If the specified color is not in the hash table, the function returns
-1. (So if you assign the value -1 to a color, the return value is
ambiguous).
colorhist_vector ppm_colorhashtocolorhist( const colorhash_table cht,
const int ncolors )
This converts a colorhash_table to a colorhist_vector. The return
value is a new colorhist_vector which you must eventually free with
ppm_freecolorhist().
ncolors is the number of colors in cht. If it has more colors than
that, ppm_colorhashtocolorhist does not create a colorhist_vector and
returns NULL.
colorhash_table ppm_colorhisttocolorhash( const colorhist_vector chv,
const int ncolors )
This poorly named function does not convert from a colorhist_vector to
a colorhash_table.
It does create a colorhash_table based on a colorhist_vector input, but
the integer value for a given color in the output is not the same as
the integer value for that same color in the input.
ppm_colorhisttocolorhash() ignores the integer values in the input. In
the output, the integer value for a color is the index in the input
colorhist_vector for that color.
You can easily create a color map for an image by running
ppm_computecolorhist() over the image, then ppm_colorhisttocolorhash()
over the result. Now you can use ppm_lookupcolor() to find a unique
color index for any pixel in the input.
If the same color appears twice in the input,
ppm_colorhisttocolorhash() exit the program with an error message.
ncolors is the number of colors in chv.
The return value is a new colorhash_table which you must eventually
free with ppm_freecolorhash().
COLOR HISTOGRAMS
The Netpbm libraries give you functions to examine a Netpbm image and
determine what colors are in it and how many pixels of each color are
in it. This information is known as a color histogram. Netpbm uses
its colorhash_table data type to represent a color histogram.
colorhash_table ppm_computecolorhash( pixel ** const pixels, const int
cols, const int rows, const int maxcolors, int* const colorsP )
This poorly but historically named function generates a colorhash_table
whose value for each color is the number of pixels in a specified image
that have that color. (I.e. a color histogram). As a bonus, it
returns the number of colors in the image.
(It’s poorly named because not all colorhash_tables are color
histograms, but that’s all it generates).
pixels, cols, and rows describe the input image.
maxcolors is the maximum number of colors you want processed. If there
are more colors that that in the input image, ppm_computecolorhash()
returns NULL as its return value and stops processing as soon as it
discovers this. This makes it run faster and use less memory. One use
for maxcolors is when you just want to find out whether or not the
image has more than N colors and don’t want to wait to generate a huge
color table if so. If you don’t want any limit on the number of
colors, specify maxcolors=0.
ppm_computecolorhash() returns the actual number of colors in the image
as *colorsP, but only if it is less than or equal to maxcolors.
colorhash_table ppm_computecolorhash2( FILE * const ifp, const int
cols, const int rows, const pixval maxval, const int format, const int
maxcolors, int* const colorsP )
This is the same as ppm_computecolorhash() except that instead of
feeding it an array of pixels in storage, you give it an open file
stream and it reads the image from the file. The file must be
positioned after the header, at the raster. Upon return, the file is
still open, but its position is undefined.
maxval and format are the values for the image (i.e. information from
the file’s header).
colorhist_vector ppm_computecolorhist( pixel ** pixels, int cols, int
rows, int maxcolors, int * colorsP )
This is like ppm_computecolorhash() except that it creates a
colorhist_vector instead of a colorhash_table.
If you supply a nonzero maxcolors argument, that is the maximum number
of colors you expect to find in the input image. If there are more
colors than you say in the image, ppm_computecolorhist() returns a null
pointer as its return value and nothing meaningful as *colorsP.
If not, the function returns the new colorhist_vector as its return
value and the actual number of colors in the image as *colorsP. The
returned array has space allocated for the specified number of colors
regardless of how many actually exist. The extra space is at the high
end of the array and is available for your use in expanding the
colorhist_vector.
If you specify maxcolors=0, there is no limit on the number of colors
returned and the return array has space for 5 extra colors at the high
end for your use in expanding the colorhist_vector.
colorhist_vector ppm_computecolorhist2( FILE * ifp,
int cols, int rows, int maxcolors, pixval maxval, int format,
int * colorsP )
This is the same as ppm_computecolorhist() except that instead of
feeding it an array of pixels in storage, you give it an open file
stream and it reads the image from the file. The file must be
positioned after the header, at the raster. Upon return, the file is
still open, but its position is undefined.
SEE ALSO
pbm(5), pgm(5), libpbm(3)
AUTHOR
Copyright (C) 1989, 1991 by Tony Hansen and Jef Poskanzer.
libppm(3)