Man Linux: Main Page and Category List

NAME

       perlapi - autogenerated documentation for the perl public API

DESCRIPTION

       This file contains the documentation of the perl public API generated
       by embed.pl, specifically a listing of functions, macros, flags, and
       variables that may be used by extension writers.  The interfaces of any
       functions that are not listed here are subject to change without
       notice.  For this reason, blindly using functions listed in proto.h is
       to be avoided when writing extensions.

       Note that all Perl API global variables must be referenced with the
       "PL_" prefix.  Some macros are provided for compatibility with the
       older, unadorned names, but this support may be disabled in a future
       release.

       Perl was originally written to handle US-ASCII only (that is characters
       whose ordinal numbers are in the range 0 - 127).  And documentation and
       comments may still use the term ASCII, when sometimes in fact the
       entire range from 0 - 255 is meant.

       Note that Perl can be compiled and run under EBCDIC (See perlebcdic) or
       ASCII.  Most of the documentation (and even comments in the code)
       ignore the EBCDIC possibility.  For almost all purposes the differences
       are transparent.  As an example, under EBCDIC, instead of UTF-8, UTF-
       EBCDIC is used to encode Unicode strings, and so whenever this
       documentation refers to "utf8" (and variants of that name, including in
       function names), it also (essentially transparently) means
       "UTF-EBCDIC".  But the ordinals of characters differ between ASCII,
       EBCDIC, and the UTF- encodings, and a string encoded in UTF-EBCDIC may
       occupy more bytes than in UTF-8.

       Also, on some EBCDIC machines, functions that are documented as
       operating on US-ASCII (or Basic Latin in Unicode terminology) may in
       fact operate on all 256 characters in the EBCDIC range, not just the
       subset corresponding to US-ASCII.

       The listing below is alphabetical, case insensitive.

"Gimme" Values

       GIMME   A backward-compatible version of "GIMME_V" which can only
               return "G_SCALAR" or "G_ARRAY"; in a void context, it returns
               "G_SCALAR".  Deprecated.  Use "GIMME_V" instead.

                       U32     GIMME

       GIMME_V The XSUB-writer’s equivalent to Perl’s "wantarray".  Returns
               "G_VOID", "G_SCALAR" or "G_ARRAY" for void, scalar or list
               context, respectively.

                       U32     GIMME_V

       G_ARRAY Used to indicate list context.  See "GIMME_V", "GIMME" and
               perlcall.

       G_DISCARD
               Indicates that arguments returned from a callback should be
               discarded.  See perlcall.

       G_EVAL  Used to force a Perl "eval" wrapper around a callback.  See
               perlcall.

       G_NOARGS
               Indicates that no arguments are being sent to a callback.  See
               perlcall.

       G_SCALAR
               Used to indicate scalar context.  See "GIMME_V", "GIMME", and
               perlcall.

       G_VOID  Used to indicate void context.  See "GIMME_V" and perlcall.

Array Manipulation Functions

       AvFILL  Same as "av_len()".  Deprecated, use "av_len()" instead.

                       int     AvFILL(AV* av)

       av_clear
               Clears an array, making it empty.  Does not free the memory
               used by the array itself.

                       void    av_clear(AV *av)

       av_create_and_push
               Push an SV onto the end of the array, creating the array if
               necessary.  A small internal helper function to remove a
               commonly duplicated idiom.

               NOTE: this function is experimental and may change or be
               removed without notice.

                       void    av_create_and_push(AV **const avp, SV *const val)

       av_create_and_unshift_one
               Unshifts an SV onto the beginning of the array, creating the
               array if necessary.  A small internal helper function to remove
               a commonly duplicated idiom.

               NOTE: this function is experimental and may change or be
               removed without notice.

                       SV**    av_create_and_unshift_one(AV **const avp, SV *const val)

       av_delete
               Deletes the element indexed by "key" from the array.  Returns
               the deleted element. If "flags" equals "G_DISCARD", the element
               is freed and null is returned.

                       SV*     av_delete(AV *av, I32 key, I32 flags)

       av_exists
               Returns true if the element indexed by "key" has been
               initialized.

               This relies on the fact that uninitialized array elements are
               set to &PL_sv_undef.

                       bool    av_exists(AV *av, I32 key)

       av_extend
               Pre-extend an array.  The "key" is the index to which the array
               should be extended.

                       void    av_extend(AV *av, I32 key)

       av_fetch
               Returns the SV at the specified index in the array.  The "key"
               is the index.  If "lval" is set then the fetch will be part of
               a store.  Check that the return value is non-null before
               dereferencing it to a "SV*".

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied arrays.

                       SV**    av_fetch(AV *av, I32 key, I32 lval)

       av_fill Set the highest index in the array to the given number,
               equivalent to Perl’s "$#array = $fill;".

               The number of elements in the an array will be "fill + 1" after
               av_fill() returns.  If the array was previously shorter then
               the additional elements appended are set to "PL_sv_undef".  If
               the array was longer, then the excess elements are freed.
               "av_fill(av, -1)" is the same as "av_clear(av)".

                       void    av_fill(AV *av, I32 fill)

       av_len  Returns the highest index in the array.  The number of elements
               in the array is "av_len(av) + 1".  Returns -1 if the array is
               empty.

                       I32     av_len(const AV *av)

       av_make Creates a new AV and populates it with a list of SVs.  The SVs
               are copied into the array, so they may be freed after the call
               to av_make.  The new AV will have a reference count of 1.

                       AV*     av_make(I32 size, SV **strp)

       av_pop  Pops an SV off the end of the array.  Returns &PL_sv_undef if
               the array is empty.

                       SV*     av_pop(AV *av)

       av_push Pushes an SV onto the end of the array.  The array will grow
               automatically to accommodate the addition. Like "av_store",
               this takes ownership of one reference count.

                       void    av_push(AV *av, SV *val)

       av_shift
               Shifts an SV off the beginning of the array. Returns
               &PL_sv_undef if the array is empty.

                       SV*     av_shift(AV *av)

       av_store
               Stores an SV in an array.  The array index is specified as
               "key".  The return value will be NULL if the operation failed
               or if the value did not need to be actually stored within the
               array (as in the case of tied arrays). Otherwise it can be
               dereferenced to get the original "SV*".  Note that the caller
               is responsible for suitably incrementing the reference count of
               "val" before the call, and decrementing it if the function
               returned NULL.

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied arrays.

                       SV**    av_store(AV *av, I32 key, SV *val)

       av_undef
               Undefines the array.  Frees the memory used by the array
               itself.

                       void    av_undef(AV *av)

       av_unshift
               Unshift the given number of "undef" values onto the beginning
               of the array.  The array will grow automatically to accommodate
               the addition.  You must then use "av_store" to assign values to
               these new elements.

                       void    av_unshift(AV *av, I32 num)

       get_av  Returns the AV of the specified Perl array.  "flags" are passed
               to "gv_fetchpv". If "GV_ADD" is set and the Perl variable does
               not exist then it will be created.  If "flags" is zero and the
               variable does not exist then NULL is returned.

               NOTE: the perl_ form of this function is deprecated.

                       AV*     get_av(const char *name, I32 flags)

       newAV   Creates a new AV.  The reference count is set to 1.

                       AV*     newAV()

       sortsv  Sort an array. Here is an example:

                   sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);

               Currently this always uses mergesort. See sortsv_flags for a
               more flexible routine.

                       void    sortsv(SV** array, size_t num_elts, SVCOMPARE_t cmp)

       sortsv_flags
               Sort an array, with various options.

                       void    sortsv_flags(SV** array, size_t num_elts, SVCOMPARE_t cmp, U32 flags)

Callback Functions

       call_argv
               Performs a callback to the specified Perl sub.  See perlcall.

               NOTE: the perl_ form of this function is deprecated.

                       I32     call_argv(const char* sub_name, I32 flags, char** argv)

       call_method
               Performs a callback to the specified Perl method.  The blessed
               object must be on the stack.  See perlcall.

               NOTE: the perl_ form of this function is deprecated.

                       I32     call_method(const char* methname, I32 flags)

       call_pv Performs a callback to the specified Perl sub.  See perlcall.

               NOTE: the perl_ form of this function is deprecated.

                       I32     call_pv(const char* sub_name, I32 flags)

       call_sv Performs a callback to the Perl sub whose name is in the SV.
               See perlcall.

               NOTE: the perl_ form of this function is deprecated.

                       I32     call_sv(SV* sv, VOL I32 flags)

       ENTER   Opening bracket on a callback.  See "LEAVE" and perlcall.

                               ENTER;

       eval_pv Tells Perl to "eval" the given string and return an SV* result.

               NOTE: the perl_ form of this function is deprecated.

                       SV*     eval_pv(const char* p, I32 croak_on_error)

       eval_sv Tells Perl to "eval" the string in the SV.

               NOTE: the perl_ form of this function is deprecated.

                       I32     eval_sv(SV* sv, I32 flags)

       FREETMPS
               Closing bracket for temporaries on a callback.  See "SAVETMPS"
               and perlcall.

                               FREETMPS;

       LEAVE   Closing bracket on a callback.  See "ENTER" and perlcall.

                               LEAVE;

       SAVETMPS
               Opening bracket for temporaries on a callback.  See "FREETMPS"
               and perlcall.

                               SAVETMPS;

Character classes

       isALNUM Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) alphanumeric character (including underscore) or
               digit.

                       bool    isALNUM(char ch)

       isALPHA Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) alphabetic character.

                       bool    isALPHA(char ch)

       isDIGIT Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) digit.

                       bool    isDIGIT(char ch)

       isLOWER Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) lowercase character.

                       bool    isLOWER(char ch)

       isSPACE Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) whitespace.

                       bool    isSPACE(char ch)

       isUPPER Returns a boolean indicating whether the C "char" is a US-ASCII
               (Basic Latin) uppercase character.

                       bool    isUPPER(char ch)

       toLOWER Converts the specified character to lowercase.  Characters
               outside the US-ASCII (Basic Latin) range are viewed as not
               having any case.

                       char    toLOWER(char ch)

       toUPPER Converts the specified character to uppercase.  Characters
               outside the US-ASCII (Basic Latin) range are viewed as not
               having any case.

                       char    toUPPER(char ch)

Cloning an interpreter

       perl_clone
               Create and return a new interpreter by cloning the current one.

               perl_clone takes these flags as parameters:

               CLONEf_COPY_STACKS - is used to, well, copy the stacks also,
               without it we only clone the data and zero the stacks, with it
               we copy the stacks and the new perl interpreter is ready to run
               at the exact same point as the previous one.  The pseudo-fork
               code uses COPY_STACKS while the threads->create doesn’t.

               CLONEf_KEEP_PTR_TABLE perl_clone keeps a ptr_table with the
               pointer of the old variable as a key and the new variable as a
               value, this allows it to check if something has been cloned and
               not clone it again but rather just use the value and increase
               the refcount. If KEEP_PTR_TABLE is not set then perl_clone will
               kill the ptr_table using the function
               "ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;", reason to
               keep it around is if you want to dup some of your own variable
               who are outside the graph perl scans, example of this code is
               in threads.xs create

               CLONEf_CLONE_HOST This is a win32 thing, it is ignored on unix,
               it tells perls win32host code (which is c++) to clone itself,
               this is needed on win32 if you want to run two threads at the
               same time, if you just want to do some stuff in a separate perl
               interpreter and then throw it away and return to the original
               one, you don’t need to do anything.

                       PerlInterpreter*        perl_clone(PerlInterpreter *proto_perl, UV flags)

CV Manipulation Functions

       CvSTASH Returns the stash of the CV.

                       HV*     CvSTASH(CV* cv)

       get_cv  Uses "strlen" to get the length of "name", then calls
               "get_cvn_flags".

               NOTE: the perl_ form of this function is deprecated.

                       CV*     get_cv(const char* name, I32 flags)

       get_cvn_flags
               Returns the CV of the specified Perl subroutine.  "flags" are
               passed to "gv_fetchpvn_flags". If "GV_ADD" is set and the Perl
               subroutine does not exist then it will be declared (which has
               the same effect as saying "sub name;").  If "GV_ADD" is not set
               and the subroutine does not exist then NULL is returned.

               NOTE: the perl_ form of this function is deprecated.

                       CV*     get_cvn_flags(const char* name, STRLEN len, I32 flags)

Embedding Functions

       cv_undef
               Clear out all the active components of a CV. This can happen
               either by an explicit "undef &foo", or by the reference count
               going to zero.  In the former case, we keep the CvOUTSIDE
               pointer, so that any anonymous children can still follow the
               full lexical scope chain.

                       void    cv_undef(CV* cv)

       load_module
               Loads the module whose name is pointed to by the string part of
               name.  Note that the actual module name, not its filename,
               should be given.  Eg, "Foo::Bar" instead of "Foo/Bar.pm".
               flags can be any of PERL_LOADMOD_DENY, PERL_LOADMOD_NOIMPORT,
               or PERL_LOADMOD_IMPORT_OPS (or 0 for no flags). ver, if
               specified, provides version semantics similar to "use Foo::Bar
               VERSION".  The optional trailing SV* arguments can be used to
               specify arguments to the module’s import() method, similar to
               "use Foo::Bar VERSION LIST".  They must be terminated with a
               final NULL pointer.  Note that this list can only be omitted
               when the PERL_LOADMOD_NOIMPORT flag has been used.  Otherwise
               at least a single NULL pointer to designate the default import
               list is required.

                       void    load_module(U32 flags, SV* name, SV* ver, ...)

       nothreadhook
               Stub that provides thread hook for perl_destruct when there are
               no threads.

                       int     nothreadhook()

       perl_alloc
               Allocates a new Perl interpreter.  See perlembed.

                       PerlInterpreter*        perl_alloc()

       perl_construct
               Initializes a new Perl interpreter.  See perlembed.

                       void    perl_construct(PerlInterpreter *my_perl)

       perl_destruct
               Shuts down a Perl interpreter.  See perlembed.

                       int     perl_destruct(PerlInterpreter *my_perl)

       perl_free
               Releases a Perl interpreter.  See perlembed.

                       void    perl_free(PerlInterpreter *my_perl)

       perl_parse
               Tells a Perl interpreter to parse a Perl script.  See
               perlembed.

                       int     perl_parse(PerlInterpreter *my_perl, XSINIT_t xsinit, int argc, char** argv, char** env)

       perl_run
               Tells a Perl interpreter to run.  See perlembed.

                       int     perl_run(PerlInterpreter *my_perl)

       require_pv
               Tells Perl to "require" the file named by the string argument.
               It is analogous to the Perl code "eval "require '$file'"".
               It’s even implemented that way; consider using load_module
               instead.

               NOTE: the perl_ form of this function is deprecated.

                       void    require_pv(const char* pv)

Functions in file dump.c

       pv_display
               Similar to

                 pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);

               except that an additional "\0" will be appended to the string
               when len > cur and pv[cur] is "\0".

               Note that the final string may be up to 7 chars longer than
               pvlim.

                       char*   pv_display(SV *dsv, const char *pv, STRLEN cur, STRLEN len, STRLEN pvlim)

       pv_escape
               Escapes at most the first "count" chars of pv and puts the
               results into dsv such that the size of the escaped string will
               not exceed "max" chars and will not contain any incomplete
               escape sequences.

               If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes
               in the string will also be escaped.

               Normally the SV will be cleared before the escaped string is
               prepared, but when PERL_PV_ESCAPE_NOCLEAR is set this will not
               occur.

               If PERL_PV_ESCAPE_UNI is set then the input string is treated
               as Unicode, if PERL_PV_ESCAPE_UNI_DETECT is set then the input
               string is scanned using "is_utf8_string()" to determine if it
               is Unicode.

               If PERL_PV_ESCAPE_ALL is set then all input chars will be
               output using "\x01F1" style escapes, otherwise only chars above
               255 will be escaped using this style, other non printable chars
               will use octal or common escaped patterns like "\n". If
               PERL_PV_ESCAPE_NOBACKSLASH then all chars below 255 will be
               treated as printable and will be output as literals.

               If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of
               the string will be escaped, regardles of max. If the string is
               utf8 and the chars value is >255 then it will be returned as a
               plain hex sequence. Thus the output will either be a single
               char, an octal escape sequence, a special escape like "\n" or a
               3 or more digit hex value.

               If PERL_PV_ESCAPE_RE is set then the escape char used will be a
               ’%’ and not a ’\\’. This is because regexes very often contain
               backslashed sequences, whereas ’%’ is not a particularly common
               character in patterns.

               Returns a pointer to the escaped text as held by dsv.

                       char*   pv_escape(SV *dsv, char const * const str, const STRLEN count, const STRLEN max, STRLEN * const escaped, const U32 flags)

       pv_pretty
               Converts a string into something presentable, handling escaping
               via pv_escape() and supporting quoting and ellipses.

               If the PERL_PV_PRETTY_QUOTE flag is set then the result will be
               double quoted with any double quotes in the string escaped.
               Otherwise if the PERL_PV_PRETTY_LTGT flag is set then the
               result be wrapped in angle brackets.

               If the PERL_PV_PRETTY_ELLIPSES flag is set and not all
               characters in string were output then an ellipsis "..." will be
               appended to the string. Note that this happens AFTER it has
               been quoted.

               If start_color is non-null then it will be inserted after the
               opening quote (if there is one) but before the escaped text. If
               end_color is non-null then it will be inserted after the
               escaped text but before any quotes or ellipses.

               Returns a pointer to the prettified text as held by dsv.

                       char*   pv_pretty(SV *dsv, char const * const str, const STRLEN count, const STRLEN max, char const * const start_color, char const * const end_color, const U32 flags)

Functions in file mathoms.c

       gv_fetchmethod
               See gv_fetchmethod_autoload.

                       GV*     gv_fetchmethod(HV* stash, const char* name)

       pack_cat
               The engine implementing pack() Perl function. Note: parameters
               next_in_list and flags are not used. This call should not be
               used; use packlist instead.

                       void    pack_cat(SV *cat, const char *pat, const char *patend, SV **beglist, SV **endlist, SV ***next_in_list, U32 flags)

       sv_2pvbyte_nolen
               Return a pointer to the byte-encoded representation of the SV.
               May cause the SV to be downgraded from UTF-8 as a side-effect.

               Usually accessed via the "SvPVbyte_nolen" macro.

                       char*   sv_2pvbyte_nolen(SV* sv)

       sv_2pvutf8_nolen
               Return a pointer to the UTF-8-encoded representation of the SV.
               May cause the SV to be upgraded to UTF-8 as a side-effect.

               Usually accessed via the "SvPVutf8_nolen" macro.

                       char*   sv_2pvutf8_nolen(SV* sv)

       sv_2pv_nolen
               Like "sv_2pv()", but doesn’t return the length too. You should
               usually use the macro wrapper "SvPV_nolen(sv)" instead.
                    char*     sv_2pv_nolen(SV* sv)

       sv_catpvn_mg
               Like "sv_catpvn", but also handles ’set’ magic.

                       void    sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)

       sv_catsv_mg
               Like "sv_catsv", but also handles ’set’ magic.

                       void    sv_catsv_mg(SV *dsv, SV *ssv)

       sv_force_normal
               Undo various types of fakery on an SV: if the PV is a shared
               string, make a private copy; if we’re a ref, stop refing; if
               we’re a glob, downgrade to an xpvmg. See also
               "sv_force_normal_flags".

                       void    sv_force_normal(SV *sv)

       sv_iv   A private implementation of the "SvIVx" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       IV      sv_iv(SV* sv)

       sv_nolocking
               Dummy routine which "locks" an SV when there is no locking
               module present.  Exists to avoid test for a NULL function
               pointer and because it could potentially warn under some level
               of strict-ness.

               "Superseded" by sv_nosharing().

                       void    sv_nolocking(SV *sv)

       sv_nounlocking
               Dummy routine which "unlocks" an SV when there is no locking
               module present.  Exists to avoid test for a NULL function
               pointer and because it could potentially warn under some level
               of strict-ness.

               "Superseded" by sv_nosharing().

                       void    sv_nounlocking(SV *sv)

       sv_nv   A private implementation of the "SvNVx" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       NV      sv_nv(SV* sv)

       sv_pv   Use the "SvPV_nolen" macro instead

                       char*   sv_pv(SV *sv)

       sv_pvbyte
               Use "SvPVbyte_nolen" instead.

                       char*   sv_pvbyte(SV *sv)

       sv_pvbyten
               A private implementation of the "SvPVbyte" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       char*   sv_pvbyten(SV *sv, STRLEN *lp)

       sv_pvn  A private implementation of the "SvPV" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       char*   sv_pvn(SV *sv, STRLEN *lp)

       sv_pvutf8
               Use the "SvPVutf8_nolen" macro instead

                       char*   sv_pvutf8(SV *sv)

       sv_pvutf8n
               A private implementation of the "SvPVutf8" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       char*   sv_pvutf8n(SV *sv, STRLEN *lp)

       sv_taint
               Taint an SV. Use "SvTAINTED_on" instead.
                    void sv_taint(SV* sv)

       sv_unref
               Unsets the RV status of the SV, and decrements the reference
               count of whatever was being referenced by the RV.  This can
               almost be thought of as a reversal of "newSVrv".  This is
               "sv_unref_flags" with the "flag" being zero.  See "SvROK_off".

                       void    sv_unref(SV* sv)

       sv_usepvn
               Tells an SV to use "ptr" to find its string value. Implemented
               by calling "sv_usepvn_flags" with "flags" of 0, hence does not
               handle ’set’ magic. See "sv_usepvn_flags".

                       void    sv_usepvn(SV* sv, char* ptr, STRLEN len)

       sv_usepvn_mg
               Like "sv_usepvn", but also handles ’set’ magic.

                       void    sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)

       sv_uv   A private implementation of the "SvUVx" macro for compilers
               which can’t cope with complex macro expressions. Always use the
               macro instead.

                       UV      sv_uv(SV* sv)

       unpack_str
               The engine implementing unpack() Perl function. Note:
               parameters strbeg, new_s and ocnt are not used. This call
               should not be used, use unpackstring instead.

                       I32     unpack_str(const char *pat, const char *patend, const char *s, const char *strbeg, const char *strend, char **new_s, I32 ocnt, U32 flags)

Functions in file perl.h

       PERL_SYS_INIT
               Provides system-specific tune up of the C runtime environment
               necessary to run Perl interpreters. This should be called only
               once, before creating any Perl interpreters.

                       void    PERL_SYS_INIT(int argc, char** argv)

       PERL_SYS_INIT3
               Provides system-specific tune up of the C runtime environment
               necessary to run Perl interpreters. This should be called only
               once, before creating any Perl interpreters.

                       void    PERL_SYS_INIT3(int argc, char** argv, char** env)

       PERL_SYS_TERM
               Provides system-specific clean up of the C runtime environment
               after running Perl interpreters. This should be called only
               once, after freeing any remaining Perl interpreters.

                       void    PERL_SYS_TERM()

Functions in file pp_ctl.c

       find_runcv
               Locate the CV corresponding to the currently executing sub or
               eval.  If db_seqp is non_null, skip CVs that are in the DB
               package and populate *db_seqp with the cop sequence number at
               the point that the DB:: code was entered. (allows debuggers to
               eval in the scope of the breakpoint rather than in the scope of
               the debugger itself).

                       CV*     find_runcv(U32 *db_seqp)

Functions in file pp_pack.c

       packlist
               The engine implementing pack() Perl function.

                       void    packlist(SV *cat, const char *pat, const char *patend, SV **beglist, SV **endlist)

       unpackstring
               The engine implementing unpack() Perl function. "unpackstring"
               puts the extracted list items on the stack and returns the
               number of elements.  Issue "PUTBACK" before and "SPAGAIN" after
               the call to this function.

                       I32     unpackstring(const char *pat, const char *patend, const char *s, const char *strend, U32 flags)

GV Functions

       GvSV    Return the SV from the GV.

                       SV*     GvSV(GV* gv)

       gv_const_sv
               If "gv" is a typeglob whose subroutine entry is a constant sub
               eligible for inlining, or "gv" is a placeholder reference that
               would be promoted to such a typeglob, then returns the value
               returned by the sub.  Otherwise, returns NULL.

                       SV*     gv_const_sv(GV* gv)

       gv_fetchmeth
               Returns the glob with the given "name" and a defined subroutine
               or "NULL".  The glob lives in the given "stash", or in the
               stashes accessible via @ISA and UNIVERSAL::.

               The argument "level" should be either 0 or -1.  If "level==0",
               as a side-effect creates a glob with the given "name" in the
               given "stash" which in the case of success contains an alias
               for the subroutine, and sets up caching info for this glob.

               This function grants "SUPER" token as a postfix of the stash
               name. The GV returned from "gv_fetchmeth" may be a method cache
               entry, which is not visible to Perl code.  So when calling
               "call_sv", you should not use the GV directly; instead, you
               should use the method’s CV, which can be obtained from the GV
               with the "GvCV" macro.

                       GV*     gv_fetchmeth(HV* stash, const char* name, STRLEN len, I32 level)

       gv_fetchmethod_autoload
               Returns the glob which contains the subroutine to call to
               invoke the method on the "stash".  In fact in the presence of
               autoloading this may be the glob for "AUTOLOAD".  In this case
               the corresponding variable $AUTOLOAD is already setup.

               The third parameter of "gv_fetchmethod_autoload" determines
               whether AUTOLOAD lookup is performed if the given method is not
               present: non-zero means yes, look for AUTOLOAD; zero means no,
               don’t look for AUTOLOAD.  Calling "gv_fetchmethod" is
               equivalent to calling "gv_fetchmethod_autoload" with a non-zero
               "autoload" parameter.

               These functions grant "SUPER" token as a prefix of the method
               name. Note that if you want to keep the returned glob for a
               long time, you need to check for it being "AUTOLOAD", since at
               the later time the call may load a different subroutine due to
               $AUTOLOAD changing its value. Use the glob created via a side
               effect to do this.

               These functions have the same side-effects and as
               "gv_fetchmeth" with "level==0".  "name" should be writable if
               contains ':' or ' ''. The warning against passing the GV
               returned by "gv_fetchmeth" to "call_sv" apply equally to these
               functions.

                       GV*     gv_fetchmethod_autoload(HV* stash, const char* name, I32 autoload)

       gv_fetchmeth_autoload
               Same as gv_fetchmeth(), but looks for autoloaded subroutines
               too.  Returns a glob for the subroutine.

               For an autoloaded subroutine without a GV, will create a GV
               even if "level < 0".  For an autoloaded subroutine without a
               stub, GvCV() of the result may be zero.

                       GV*     gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN len, I32 level)

       gv_stashpv
               Returns a pointer to the stash for a specified package.  Uses
               "strlen" to determine the length of "name", then calls
               "gv_stashpvn()".

                       HV*     gv_stashpv(const char* name, I32 flags)

       gv_stashpvn
               Returns a pointer to the stash for a specified package.  The
               "namelen" parameter indicates the length of the "name", in
               bytes.  "flags" is passed to "gv_fetchpvn_flags()", so if set
               to "GV_ADD" then the package will be created if it does not
               already exist.  If the package does not exist and "flags" is 0
               (or any other setting that does not create packages) then NULL
               is returned.

                       HV*     gv_stashpvn(const char* name, U32 namelen, I32 flags)

       gv_stashpvs
               Like "gv_stashpvn", but takes a literal string instead of a
               string/length pair.

                       HV*     gv_stashpvs(const char* name, I32 create)

       gv_stashsv
               Returns a pointer to the stash for a specified package.  See
               "gv_stashpvn".

                       HV*     gv_stashsv(SV* sv, I32 flags)

Handy Values

       Nullav  Null AV pointer.

       Nullch  Null character pointer.

       Nullcv  Null CV pointer.

       Nullhv  Null HV pointer.

       Nullsv  Null SV pointer.

Hash Manipulation Functions

       get_hv  Returns the HV of the specified Perl hash.  "flags" are passed
               to "gv_fetchpv". If "GV_ADD" is set and the Perl variable does
               not exist then it will be created.  If "flags" is zero and the
               variable does not exist then NULL is returned.

               NOTE: the perl_ form of this function is deprecated.

                       HV*     get_hv(const char *name, I32 flags)

       HEf_SVKEY
               This flag, used in the length slot of hash entries and magic
               structures, specifies the structure contains an "SV*" pointer
               where a "char*" pointer is to be expected. (For information
               only--not to be used).

       HeHASH  Returns the computed hash stored in the hash entry.

                       U32     HeHASH(HE* he)

       HeKEY   Returns the actual pointer stored in the key slot of the hash
               entry. The pointer may be either "char*" or "SV*", depending on
               the value of "HeKLEN()".  Can be assigned to.  The "HePV()" or
               "HeSVKEY()" macros are usually preferable for finding the value
               of a key.

                       void*   HeKEY(HE* he)

       HeKLEN  If this is negative, and amounts to "HEf_SVKEY", it indicates
               the entry holds an "SV*" key.  Otherwise, holds the actual
               length of the key.  Can be assigned to. The "HePV()" macro is
               usually preferable for finding key lengths.

                       STRLEN  HeKLEN(HE* he)

       HePV    Returns the key slot of the hash entry as a "char*" value,
               doing any necessary dereferencing of possibly "SV*" keys.  The
               length of the string is placed in "len" (this is a macro, so do
               not use &len).  If you do not care about what the length of the
               key is, you may use the global variable "PL_na", though this is
               rather less efficient than using a local variable.  Remember
               though, that hash keys in perl are free to contain embedded
               nulls, so using "strlen()" or similar is not a good way to find
               the length of hash keys. This is very similar to the "SvPV()"
               macro described elsewhere in this document. See also "HeUTF8".

               If you are using "HePV" to get values to pass to "newSVpvn()"
               to create a new SV, you should consider using
               "newSVhek(HeKEY_hek(he))" as it is more efficient.

                       char*   HePV(HE* he, STRLEN len)

       HeSVKEY Returns the key as an "SV*", or "NULL" if the hash entry does
               not contain an "SV*" key.

                       SV*     HeSVKEY(HE* he)

       HeSVKEY_force
               Returns the key as an "SV*".  Will create and return a
               temporary mortal "SV*" if the hash entry contains only a
               "char*" key.

                       SV*     HeSVKEY_force(HE* he)

       HeSVKEY_set
               Sets the key to a given "SV*", taking care to set the
               appropriate flags to indicate the presence of an "SV*" key, and
               returns the same "SV*".

                       SV*     HeSVKEY_set(HE* he, SV* sv)

       HeUTF8  Returns whether the "char *" value returned by "HePV" is
               encoded in UTF-8, doing any necessary dereferencing of possibly
               "SV*" keys.  The value returned will be 0 or non-0, not
               necessarily 1 (or even a value with any low bits set), so do
               not blindly assign this to a "bool" variable, as "bool" may be
               a typedef for "char".

                       char*   HeUTF8(HE* he, STRLEN len)

       HeVAL   Returns the value slot (type "SV*") stored in the hash entry.

                       SV*     HeVAL(HE* he)

       HvNAME  Returns the package name of a stash, or NULL if "stash" isn’t a
               stash.  See "SvSTASH", "CvSTASH".

                       char*   HvNAME(HV* stash)

       hv_assert
               Check that a hash is in an internally consistent state.

                       void    hv_assert(HV *hv)

       hv_clear
               Clears a hash, making it empty.

                       void    hv_clear(HV* hv)

       hv_clear_placeholders
               Clears any placeholders from a hash.  If a restricted hash has
               any of its keys marked as readonly and the key is subsequently
               deleted, the key is not actually deleted but is marked by
               assigning it a value of &PL_sv_placeholder.  This tags it so it
               will be ignored by future operations such as iterating over the
               hash, but will still allow the hash to have a value reassigned
               to the key at some future point.  This function clears any such
               placeholder keys from the hash.  See Hash::Util::lock_keys()
               for an example of its use.

                       void    hv_clear_placeholders(HV *hv)

       hv_delete
               Deletes a key/value pair in the hash.  The value SV is removed
               from the hash and returned to the caller.  The "klen" is the
               length of the key.  The "flags" value will normally be zero; if
               set to G_DISCARD then NULL will be returned.

                       SV*     hv_delete(HV *hv, const char *key, I32 klen, I32 flags)

       hv_delete_ent
               Deletes a key/value pair in the hash.  The value SV is removed
               from the hash and returned to the caller.  The "flags" value
               will normally be zero; if set to G_DISCARD then NULL will be
               returned.  "hash" can be a valid precomputed hash value, or 0
               to ask for it to be computed.

                       SV*     hv_delete_ent(HV *hv, SV *keysv, I32 flags, U32 hash)

       hv_exists
               Returns a boolean indicating whether the specified hash key
               exists.  The "klen" is the length of the key.

                       bool    hv_exists(HV *hv, const char *key, I32 klen)

       hv_exists_ent
               Returns a boolean indicating whether the specified hash key
               exists. "hash" can be a valid precomputed hash value, or 0 to
               ask for it to be computed.

                       bool    hv_exists_ent(HV *hv, SV *keysv, U32 hash)

       hv_fetch
               Returns the SV which corresponds to the specified key in the
               hash.  The "klen" is the length of the key.  If "lval" is set
               then the fetch will be part of a store.  Check that the return
               value is non-null before dereferencing it to an "SV*".

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied hashes.

                       SV**    hv_fetch(HV *hv, const char *key, I32 klen, I32 lval)

       hv_fetchs
               Like "hv_fetch", but takes a literal string instead of a
               string/length pair.

                       SV**    hv_fetchs(HV* tb, const char* key, I32 lval)

       hv_fetch_ent
               Returns the hash entry which corresponds to the specified key
               in the hash.  "hash" must be a valid precomputed hash number
               for the given "key", or 0 if you want the function to compute
               it.  IF "lval" is set then the fetch will be part of a store.
               Make sure the return value is non-null before accessing it.
               The return value when "tb" is a tied hash is a pointer to a
               static location, so be sure to make a copy of the structure if
               you need to store it somewhere.

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied hashes.

                       HE*     hv_fetch_ent(HV *hv, SV *keysv, I32 lval, U32 hash)

       hv_iterinit
               Prepares a starting point to traverse a hash table.  Returns
               the number of keys in the hash (i.e. the same as "HvKEYS(tb)").
               The return value is currently only meaningful for hashes
               without tie magic.

               NOTE: Before version 5.004_65, "hv_iterinit" used to return the
               number of hash buckets that happen to be in use.  If you still
               need that esoteric value, you can get it through the macro
               "HvFILL(tb)".

                       I32     hv_iterinit(HV *hv)

       hv_iterkey
               Returns the key from the current position of the hash iterator.
               See "hv_iterinit".

                       char*   hv_iterkey(HE* entry, I32* retlen)

       hv_iterkeysv
               Returns the key as an "SV*" from the current position of the
               hash iterator.  The return value will always be a mortal copy
               of the key.  Also see "hv_iterinit".

                       SV*     hv_iterkeysv(HE* entry)

       hv_iternext
               Returns entries from a hash iterator.  See "hv_iterinit".

               You may call "hv_delete" or "hv_delete_ent" on the hash entry
               that the iterator currently points to, without losing your
               place or invalidating your iterator.  Note that in this case
               the current entry is deleted from the hash with your iterator
               holding the last reference to it.  Your iterator is flagged to
               free the entry on the next call to "hv_iternext", so you must
               not discard your iterator immediately else the entry will leak
               - call "hv_iternext" to trigger the resource deallocation.

                       HE*     hv_iternext(HV *hv)

       hv_iternextsv
               Performs an "hv_iternext", "hv_iterkey", and "hv_iterval" in
               one operation.

                       SV*     hv_iternextsv(HV *hv, char **key, I32 *retlen)

       hv_iternext_flags
               Returns entries from a hash iterator.  See "hv_iterinit" and
               "hv_iternext".  The "flags" value will normally be zero; if
               HV_ITERNEXT_WANTPLACEHOLDERS is set the placeholders keys (for
               restricted hashes) will be returned in addition to normal keys.
               By default placeholders are automatically skipped over.
               Currently a placeholder is implemented with a value that is
               &Perl_sv_placeholder. Note that the implementation of
               placeholders and restricted hashes may change, and the
               implementation currently is insufficiently abstracted for any
               change to be tidy.

               NOTE: this function is experimental and may change or be
               removed without notice.

                       HE*     hv_iternext_flags(HV *hv, I32 flags)

       hv_iterval
               Returns the value from the current position of the hash
               iterator.  See "hv_iterkey".

                       SV*     hv_iterval(HV *hv, HE *entry)

       hv_magic
               Adds magic to a hash.  See "sv_magic".

                       void    hv_magic(HV *hv, GV *gv, int how)

       hv_scalar
               Evaluates the hash in scalar context and returns the result.
               Handles magic when the hash is tied.

                       SV*     hv_scalar(HV *hv)

       hv_store
               Stores an SV in a hash.  The hash key is specified as "key" and
               "klen" is the length of the key.  The "hash" parameter is the
               precomputed hash value; if it is zero then Perl will compute
               it.  The return value will be NULL if the operation failed or
               if the value did not need to be actually stored within the hash
               (as in the case of tied hashes).  Otherwise it can be
               dereferenced to get the original "SV*".  Note that the caller
               is responsible for suitably incrementing the reference count of
               "val" before the call, and decrementing it if the function
               returned NULL.  Effectively a successful hv_store takes
               ownership of one reference to "val".  This is usually what you
               want; a newly created SV has a reference count of one, so if
               all your code does is create SVs then store them in a hash,
               hv_store will own the only reference to the new SV, and your
               code doesn’t need to do anything further to tidy up.  hv_store
               is not implemented as a call to hv_store_ent, and does not
               create a temporary SV for the key, so if your key data is not
               already in SV form then use hv_store in preference to
               hv_store_ent.

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied hashes.

                       SV**    hv_store(HV *hv, const char *key, I32 klen, SV *val, U32 hash)

       hv_stores
               Like "hv_store", but takes a literal string instead of a
               string/length pair and omits the hash parameter.

                       SV**    hv_stores(HV* tb, const char* key, NULLOK SV* val)

       hv_store_ent
               Stores "val" in a hash.  The hash key is specified as "key".
               The "hash" parameter is the precomputed hash value; if it is
               zero then Perl will compute it.  The return value is the new
               hash entry so created.  It will be NULL if the operation failed
               or if the value did not need to be actually stored within the
               hash (as in the case of tied hashes).  Otherwise the contents
               of the return value can be accessed using the "He?" macros
               described here.  Note that the caller is responsible for
               suitably incrementing the reference count of "val" before the
               call, and decrementing it if the function returned NULL.
               Effectively a successful hv_store_ent takes ownership of one
               reference to "val".  This is usually what you want; a newly
               created SV has a reference count of one, so if all your code
               does is create SVs then store them in a hash, hv_store will own
               the only reference to the new SV, and your code doesn’t need to
               do anything further to tidy up.  Note that hv_store_ent only
               reads the "key"; unlike "val" it does not take ownership of it,
               so maintaining the correct reference count on "key" is entirely
               the caller’s responsibility.  hv_store is not implemented as a
               call to hv_store_ent, and does not create a temporary SV for
               the key, so if your key data is not already in SV form then use
               hv_store in preference to hv_store_ent.

               See "Understanding the Magic of Tied Hashes and Arrays" in
               perlguts for more information on how to use this function on
               tied hashes.

                       HE*     hv_store_ent(HV *hv, SV *key, SV *val, U32 hash)

       hv_undef
               Undefines the hash.

                       void    hv_undef(HV *hv)

       newHV   Creates a new HV.  The reference count is set to 1.

                       HV*     newHV()

Magical Functions

       mg_clear
               Clear something magical that the SV represents.  See
               "sv_magic".

                       int     mg_clear(SV* sv)

       mg_copy Copies the magic from one SV to another.  See "sv_magic".

                       int     mg_copy(SV *sv, SV *nsv, const char *key, I32 klen)

       mg_find Finds the magic pointer for type matching the SV.  See
               "sv_magic".

                       MAGIC*  mg_find(const SV* sv, int type)

       mg_free Free any magic storage used by the SV.  See "sv_magic".

                       int     mg_free(SV* sv)

       mg_get  Do magic after a value is retrieved from the SV.  See
               "sv_magic".

                       int     mg_get(SV* sv)

       mg_length
               Report on the SV’s length.  See "sv_magic".

                       U32     mg_length(SV* sv)

       mg_magical
               Turns on the magical status of an SV.  See "sv_magic".

                       void    mg_magical(SV* sv)

       mg_set  Do magic after a value is assigned to the SV.  See "sv_magic".

                       int     mg_set(SV* sv)

       SvGETMAGIC
               Invokes "mg_get" on an SV if it has ’get’ magic.  This macro
               evaluates its argument more than once.

                       void    SvGETMAGIC(SV* sv)

       SvLOCK  Arranges for a mutual exclusion lock to be obtained on sv if a
               suitable module has been loaded.

                       void    SvLOCK(SV* sv)

       SvSETMAGIC
               Invokes "mg_set" on an SV if it has ’set’ magic.  This macro
               evaluates its argument more than once.

                       void    SvSETMAGIC(SV* sv)

       SvSetMagicSV
               Like "SvSetSV", but does any set magic required afterwards.

                       void    SvSetMagicSV(SV* dsb, SV* ssv)

       SvSetMagicSV_nosteal
               Like "SvSetSV_nosteal", but does any set magic required
               afterwards.

                       void    SvSetMagicSV_nosteal(SV* dsv, SV* ssv)

       SvSetSV Calls "sv_setsv" if dsv is not the same as ssv.  May evaluate
               arguments more than once.

                       void    SvSetSV(SV* dsb, SV* ssv)

       SvSetSV_nosteal
               Calls a non-destructive version of "sv_setsv" if dsv is not the
               same as ssv. May evaluate arguments more than once.

                       void    SvSetSV_nosteal(SV* dsv, SV* ssv)

       SvSHARE Arranges for sv to be shared between threads if a suitable
               module has been loaded.

                       void    SvSHARE(SV* sv)

       SvUNLOCK
               Releases a mutual exclusion lock on sv if a suitable module has
               been loaded.

                       void    SvUNLOCK(SV* sv)

Memory Management

       Copy    The XSUB-writer’s interface to the C "memcpy" function.  The
               "src" is the source, "dest" is the destination, "nitems" is the
               number of items, and "type" is the type.  May fail on
               overlapping copies.  See also "Move".

                       void    Copy(void* src, void* dest, int nitems, type)

       CopyD   Like "Copy" but returns dest. Useful for encouraging compilers
               to tail-call optimise.

                       void *  CopyD(void* src, void* dest, int nitems, type)

       Move    The XSUB-writer’s interface to the C "memmove" function.  The
               "src" is the source, "dest" is the destination, "nitems" is the
               number of items, and "type" is the type.  Can do overlapping
               moves.  See also "Copy".

                       void    Move(void* src, void* dest, int nitems, type)

       MoveD   Like "Move" but returns dest. Useful for encouraging compilers
               to tail-call optimise.

                       void *  MoveD(void* src, void* dest, int nitems, type)

       Newx    The XSUB-writer’s interface to the C "malloc" function.

               In 5.9.3, Newx() and friends replace the older New() API, and
               drops the first parameter, x, a debug aid which allowed callers
               to identify themselves.  This aid has been superseded by a new
               build option, PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhack).
               The older API is still there for use in XS modules supporting
               older perls.

                       void    Newx(void* ptr, int nitems, type)

       Newxc   The XSUB-writer’s interface to the C "malloc" function, with
               cast.  See also "Newx".

                       void    Newxc(void* ptr, int nitems, type, cast)

       Newxz   The XSUB-writer’s interface to the C "malloc" function.  The
               allocated memory is zeroed with "memzero".  See also "Newx".

                       void    Newxz(void* ptr, int nitems, type)

       Poison  PoisonWith(0xEF) for catching access to freed memory.

                       void    Poison(void* dest, int nitems, type)

       PoisonFree
               PoisonWith(0xEF) for catching access to freed memory.

                       void    PoisonFree(void* dest, int nitems, type)

       PoisonNew
               PoisonWith(0xAB) for catching access to allocated but
               uninitialized memory.

                       void    PoisonNew(void* dest, int nitems, type)

       PoisonWith
               Fill up memory with a byte pattern (a byte repeated over and
               over again) that hopefully catches attempts to access
               uninitialized memory.

                       void    PoisonWith(void* dest, int nitems, type, U8 byte)

       Renew   The XSUB-writer’s interface to the C "realloc" function.

                       void    Renew(void* ptr, int nitems, type)

       Renewc  The XSUB-writer’s interface to the C "realloc" function, with
               cast.

                       void    Renewc(void* ptr, int nitems, type, cast)

       Safefree
               The XSUB-writer’s interface to the C "free" function.

                       void    Safefree(void* ptr)

       savepv  Perl’s version of "strdup()". Returns a pointer to a newly
               allocated string which is a duplicate of "pv". The size of the
               string is determined by "strlen()". The memory allocated for
               the new string can be freed with the "Safefree()" function.

                       char*   savepv(const char* pv)

       savepvn Perl’s version of what "strndup()" would be if it existed.
               Returns a pointer to a newly allocated string which is a
               duplicate of the first "len" bytes from "pv", plus a trailing
               NUL byte. The memory allocated for the new string can be freed
               with the "Safefree()" function.

                       char*   savepvn(const char* pv, I32 len)

       savepvs Like "savepvn", but takes a literal string instead of a
               string/length pair.

                       char*   savepvs(const char* s)

       savesharedpv
               A version of "savepv()" which allocates the duplicate string in
               memory which is shared between threads.

                       char*   savesharedpv(const char* pv)

       savesharedpvn
               A version of "savepvn()" which allocates the duplicate string
               in memory which is shared between threads. (With the specific
               difference that a NULL pointer is not acceptable)

                       char*   savesharedpvn(const char *const pv, const STRLEN len)

       savesvpv
               A version of "savepv()"/"savepvn()" which gets the string to
               duplicate from the passed in SV using "SvPV()"

                       char*   savesvpv(SV* sv)

       StructCopy
               This is an architecture-independent macro to copy one structure
               to another.

                       void    StructCopy(type src, type dest, type)

       Zero    The XSUB-writer’s interface to the C "memzero" function.  The
               "dest" is the destination, "nitems" is the number of items, and
               "type" is the type.

                       void    Zero(void* dest, int nitems, type)

       ZeroD   Like "Zero" but returns dest. Useful for encouraging compilers
               to tail-call optimise.

                       void *  ZeroD(void* dest, int nitems, type)

Miscellaneous Functions

       fbm_compile
               Analyses the string in order to make fast searches on it using
               fbm_instr() -- the Boyer-Moore algorithm.

                       void    fbm_compile(SV* sv, U32 flags)

       fbm_instr
               Returns the location of the SV in the string delimited by "str"
               and "strend".  It returns "NULL" if the string can’t be found.
               The "sv" does not have to be fbm_compiled, but the search will
               not be as fast then.

                       char*   fbm_instr(unsigned char* big, unsigned char* bigend, SV* littlestr, U32 flags)

       form    Takes a sprintf-style format pattern and conventional (non-SV)
               arguments and returns the formatted string.

                   (char *) Perl_form(pTHX_ const char* pat, ...)

               can be used any place a string (char *) is required:

                   char * s = Perl_form("%d.%d",major,minor);

               Uses a single private buffer so if you want to format several
               strings you must explicitly copy the earlier strings away (and
               free the copies when you are done).

                       char*   form(const char* pat, ...)

       getcwd_sv
               Fill the sv with current working directory

                       int     getcwd_sv(SV* sv)

       my_snprintf
               The C library "snprintf" functionality, if available and
               standards-compliant (uses "vsnprintf", actually).  However, if
               the "vsnprintf" is not available, will unfortunately use the
               unsafe "vsprintf" which can overrun the buffer (there is an
               overrun check, but that may be too late).  Consider using
               "sv_vcatpvf" instead, or getting "vsnprintf".

                       int     my_snprintf(char *buffer, const Size_t len, const char *format, ...)

       my_sprintf
               The C library "sprintf", wrapped if necessary, to ensure that
               it will return the length of the string written to the buffer.
               Only rare pre-ANSI systems need the wrapper function - usually
               this is a direct call to "sprintf".

                       int     my_sprintf(char *buffer, const char *pat, ...)

       my_vsnprintf
               The C library "vsnprintf" if available and standards-compliant.
               However, if if the "vsnprintf" is not available, will
               unfortunately use the unsafe "vsprintf" which can overrun the
               buffer (there is an overrun check, but that may be too late).
               Consider using "sv_vcatpvf" instead, or getting "vsnprintf".

                       int     my_vsnprintf(char *buffer, const Size_t len, const char *format, va_list ap)

       new_version
               Returns a new version object based on the passed in SV:

                   SV *sv = new_version(SV *ver);

               Does not alter the passed in ver SV.  See "upg_version" if you
               want to upgrade the SV.

                       SV*     new_version(SV *ver)

       scan_version
               Returns a pointer to the next character after the parsed
               version string, as well as upgrading the passed in SV to an RV.

               Function must be called with an already existing SV like

                   sv = newSV(0);
                   s = scan_version(s, SV *sv, bool qv);

               Performs some preprocessing to the string to ensure that it has
               the correct characteristics of a version.  Flags the object if
               it contains an underscore (which denotes this is an alpha
               version).  The boolean qv denotes that the version should be
               interpreted as if it had multiple decimals, even if it doesn’t.

                       const char*     scan_version(const char *s, SV *rv, bool qv)

       strEQ   Test two strings to see if they are equal.  Returns true or
               false.

                       bool    strEQ(char* s1, char* s2)

       strGE   Test two strings to see if the first, "s1", is greater than or
               equal to the second, "s2".  Returns true or false.

                       bool    strGE(char* s1, char* s2)

       strGT   Test two strings to see if the first, "s1", is greater than the
               second, "s2".  Returns true or false.

                       bool    strGT(char* s1, char* s2)

       strLE   Test two strings to see if the first, "s1", is less than or
               equal to the second, "s2".  Returns true or false.

                       bool    strLE(char* s1, char* s2)

       strLT   Test two strings to see if the first, "s1", is less than the
               second, "s2".  Returns true or false.

                       bool    strLT(char* s1, char* s2)

       strNE   Test two strings to see if they are different.  Returns true or
               false.

                       bool    strNE(char* s1, char* s2)

       strnEQ  Test two strings to see if they are equal.  The "len" parameter
               indicates the number of bytes to compare.  Returns true or
               false. (A wrapper for "strncmp").

                       bool    strnEQ(char* s1, char* s2, STRLEN len)

       strnNE  Test two strings to see if they are different.  The "len"
               parameter indicates the number of bytes to compare.  Returns
               true or false. (A wrapper for "strncmp").

                       bool    strnNE(char* s1, char* s2, STRLEN len)

       sv_destroyable
               Dummy routine which reports that object can be destroyed when
               there is no sharing module present.  It ignores its single SV
               argument, and returns ’true’.  Exists to avoid test for a NULL
               function pointer and because it could potentially warn under
               some level of strict-ness.

                       bool    sv_destroyable(SV *sv)

       sv_nosharing
               Dummy routine which "shares" an SV when there is no sharing
               module present.  Or "locks" it. Or "unlocks" it. In other
               words, ignores its single SV argument.  Exists to avoid test
               for a NULL function pointer and because it could potentially
               warn under some level of strict-ness.

                       void    sv_nosharing(SV *sv)

       upg_version
               In-place upgrade of the supplied SV to a version object.

                   SV *sv = upg_version(SV *sv, bool qv);

               Returns a pointer to the upgraded SV.  Set the boolean qv if
               you want to force this SV to be interpreted as an "extended"
               version.

                       SV*     upg_version(SV *ver, bool qv)

       vcmp    Version object aware cmp.  Both operands must already have been
               converted into version objects.

                       int     vcmp(SV *lhv, SV *rhv)

       vnormal Accepts a version object and returns the normalized string
               representation.  Call like:

                   sv = vnormal(rv);

               NOTE: you can pass either the object directly or the SV
               contained within the RV.

                       SV*     vnormal(SV *vs)

       vnumify Accepts a version object and returns the normalized floating
               point representation.  Call like:

                   sv = vnumify(rv);

               NOTE: you can pass either the object directly or the SV
               contained within the RV.

                       SV*     vnumify(SV *vs)

       vstringify
               In order to maintain maximum compatibility with earlier
               versions of Perl, this function will return either the floating
               point notation or the multiple dotted notation, depending on
               whether the original version contained 1 or more dots,
               respectively

                       SV*     vstringify(SV *vs)

       vverify Validates that the SV contains a valid version object.

                   bool vverify(SV *vobj);

               Note that it only confirms the bare minimum structure (so as
               not to get confused by derived classes which may contain
               additional hash entries):

                       bool    vverify(SV *vs)

MRO Functions

       mro_get_linear_isa
               Returns either "mro_get_linear_isa_c3" or
               "mro_get_linear_isa_dfs" for the given stash, dependant upon
               which MRO is in effect for that stash.  The return value is a
               read-only AV*.

               You are responsible for "SvREFCNT_inc()" on the return value if
               you plan to store it anywhere semi-permanently (otherwise it
               might be deleted out from under you the next time the cache is
               invalidated).

                       AV*     mro_get_linear_isa(HV* stash)

       mro_method_changed_in
               Invalidates method caching on any child classes of the given
               stash, so that they might notice the changes in this one.

               Ideally, all instances of "PL_sub_generation++" in perl source
               outside of "mro.c" should be replaced by calls to this.

               Perl automatically handles most of the common ways a method
               might be redefined.  However, there are a few ways you could
               change a method in a stash without the cache code noticing, in
               which case you need to call this method afterwards:

               1) Directly manipulating the stash HV entries from XS code.

               2) Assigning a reference to a readonly scalar constant into a
               stash entry in order to create a constant subroutine (like
               constant.pm does).

               This same method is available from pure perl via,
               "mro::method_changed_in(classname)".

                       void    mro_method_changed_in(HV* stash)

Multicall Functions

       dMULTICALL
               Declare local variables for a multicall. See "Lightweight
               Callbacks" in perlcall.

                               dMULTICALL;

       MULTICALL
               Make a lightweight callback. See "Lightweight Callbacks" in
               perlcall.

                               MULTICALL;

       POP_MULTICALL
               Closing bracket for a lightweight callback.  See "Lightweight
               Callbacks" in perlcall.

                               POP_MULTICALL;

       PUSH_MULTICALL
               Opening bracket for a lightweight callback.  See "Lightweight
               Callbacks" in perlcall.

                               PUSH_MULTICALL;

Numeric functions

       grok_bin
               converts a string representing a binary number to numeric form.

               On entry start and *len give the string to scan, *flags gives
               conversion flags, and result should be NULL or a pointer to an
               NV.  The scan stops at the end of the string, or the first
               invalid character.  Unless "PERL_SCAN_SILENT_ILLDIGIT" is set
               in *flags, encountering an invalid character will also trigger
               a warning.  On return *len is set to the length of the scanned
               string, and *flags gives output flags.

               If the value is <= "UV_MAX" it is returned as a UV, the output
               flags are clear, and nothing is written to *result. If the
               value is > UV_MAX "grok_bin" returns UV_MAX, sets
               "PERL_SCAN_GREATER_THAN_UV_MAX" in the output flags, and writes
               the value to *result (or the value is discarded if result is
               NULL).

               The binary number may optionally be prefixed with "0b" or "b"
               unless "PERL_SCAN_DISALLOW_PREFIX" is set in *flags on entry.
               If "PERL_SCAN_ALLOW_UNDERSCORES" is set in *flags then the
               binary number may use ’_’ characters to separate digits.

                       UV      grok_bin(const char* start, STRLEN* len_p, I32* flags, NV *result)

       grok_hex
               converts a string representing a hex number to numeric form.

               On entry start and *len give the string to scan, *flags gives
               conversion flags, and result should be NULL or a pointer to an
               NV.  The scan stops at the end of the string, or the first
               invalid character.  Unless "PERL_SCAN_SILENT_ILLDIGIT" is set
               in *flags, encountering an invalid character will also trigger
               a warning.  On return *len is set to the length of the scanned
               string, and *flags gives output flags.

               If the value is <= UV_MAX it is returned as a UV, the output
               flags are clear, and nothing is written to *result. If the
               value is > UV_MAX "grok_hex" returns UV_MAX, sets
               "PERL_SCAN_GREATER_THAN_UV_MAX" in the output flags, and writes
               the value to *result (or the value is discarded if result is
               NULL).

               The hex number may optionally be prefixed with "0x" or "x"
               unless "PERL_SCAN_DISALLOW_PREFIX" is set in *flags on entry.
               If "PERL_SCAN_ALLOW_UNDERSCORES" is set in *flags then the hex
               number may use ’_’ characters to separate digits.

                       UV      grok_hex(const char* start, STRLEN* len_p, I32* flags, NV *result)

       grok_number
               Recognise (or not) a number.  The type of the number is
               returned (0 if unrecognised), otherwise it is a bit-ORed
               combination of IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX,
               IS_NUMBER_NOT_INT, IS_NUMBER_NEG, IS_NUMBER_INFINITY,
               IS_NUMBER_NAN (defined in perl.h).

               If the value of the number can fit an in UV, it is returned in
               the *valuep IS_NUMBER_IN_UV will be set to indicate that
               *valuep is valid, IS_NUMBER_IN_UV will never be set unless
               *valuep is valid, but *valuep may have been assigned to during
               processing even though IS_NUMBER_IN_UV is not set on return.
               If valuep is NULL, IS_NUMBER_IN_UV will be set for the same
               cases as when valuep is non-NULL, but no actual assignment (or
               SEGV) will occur.

               IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing
               decimals were seen (in which case *valuep gives the true value
               truncated to an integer), and IS_NUMBER_NEG if the number is
               negative (in which case *valuep holds the absolute value).
               IS_NUMBER_IN_UV is not set if e notation was used or the number
               is larger than a UV.

                       int     grok_number(const char *pv, STRLEN len, UV *valuep)

       grok_numeric_radix
               Scan and skip for a numeric decimal separator (radix).

                       bool    grok_numeric_radix(const char **sp, const char *send)

       grok_oct
               converts a string representing an octal number to numeric form.

               On entry start and *len give the string to scan, *flags gives
               conversion flags, and result should be NULL or a pointer to an
               NV.  The scan stops at the end of the string, or the first
               invalid character.  Unless "PERL_SCAN_SILENT_ILLDIGIT" is set
               in *flags, encountering an invalid character will also trigger
               a warning.  On return *len is set to the length of the scanned
               string, and *flags gives output flags.

               If the value is <= UV_MAX it is returned as a UV, the output
               flags are clear, and nothing is written to *result. If the
               value is > UV_MAX "grok_oct" returns UV_MAX, sets
               "PERL_SCAN_GREATER_THAN_UV_MAX" in the output flags, and writes
               the value to *result (or the value is discarded if result is
               NULL).

               If "PERL_SCAN_ALLOW_UNDERSCORES" is set in *flags then the
               octal number may use ’_’ characters to separate digits.

                       UV      grok_oct(const char* start, STRLEN* len_p, I32* flags, NV *result)

       Perl_signbit
               Return a non-zero integer if the sign bit on an NV is set, and
               0 if it is not.

               If Configure detects this system has a signbit() that will work
               with our NVs, then we just use it via the #define in perl.h.
               Otherwise, fall back on this implementation.  As a first pass,
               this gets everything right except -0.0.  Alas, catching -0.0 is
               the main use for this function, so this is not too helpful yet.
               Still, at least we have the scaffolding in place to support
               other systems, should that prove useful.

               Configure notes:  This function is called ’Perl_signbit’
               instead of a plain ’signbit’ because it is easy to imagine a
               system having a signbit() function or macro that doesn’t happen
               to work with our particular choice of NVs.  We shouldn’t just
               re-#define signbit as Perl_signbit and expect the standard
               system headers to be happy.  Also, this is a no-context
               function (no pTHX_) because Perl_signbit() is usually
               re-#defined in perl.h as a simple macro call to the system’s
               signbit().  Users should just always call Perl_signbit().

               NOTE: this function is experimental and may change or be
               removed without notice.

                       int     Perl_signbit(NV f)

       scan_bin
               For backwards compatibility. Use "grok_bin" instead.

                       NV      scan_bin(const char* start, STRLEN len, STRLEN* retlen)

       scan_hex
               For backwards compatibility. Use "grok_hex" instead.

                       NV      scan_hex(const char* start, STRLEN len, STRLEN* retlen)

       scan_oct
               For backwards compatibility. Use "grok_oct" instead.

                       NV      scan_oct(const char* start, STRLEN len, STRLEN* retlen)

Optree Manipulation Functions

       cv_const_sv
               If "cv" is a constant sub eligible for inlining. returns the
               constant value returned by the sub.  Otherwise, returns NULL.

               Constant subs can be created with "newCONSTSUB" or as described
               in "Constant Functions" in perlsub.

                       SV*     cv_const_sv(CV* cv)

       newCONSTSUB
               Creates a constant sub equivalent to Perl "sub FOO () { 123 }"
               which is eligible for inlining at compile-time.

                       CV*     newCONSTSUB(HV* stash, const char* name, SV* sv)

       newXS   Used by "xsubpp" to hook up XSUBs as Perl subs.  filename needs
               to be static storage, as it is used directly as CvFILE(),
               without a copy being made.

Pad Data Structures

       pad_sv  Get the value at offset po in the current pad.  Use macro
               PAD_SV instead of calling this function directly.

                       SV*     pad_sv(PADOFFSET po)

Per-Interpreter Variables

       PL_modglobal
               "PL_modglobal" is a general purpose, interpreter global HV for
               use by extensions that need to keep information on a per-
               interpreter basis.  In a pinch, it can also be used as a symbol
               table for extensions to share data among each other.  It is a
               good idea to use keys prefixed by the package name of the
               extension that owns the data.

                       HV*     PL_modglobal

       PL_na   A convenience variable which is typically used with "SvPV" when
               one doesn’t care about the length of the string.  It is usually
               more efficient to either declare a local variable and use that
               instead or to use the "SvPV_nolen" macro.

                       STRLEN  PL_na

       PL_sv_no
               This is the "false" SV.  See "PL_sv_yes".  Always refer to this
               as &PL_sv_no.

                       SV      PL_sv_no

       PL_sv_undef
               This is the "undef" SV.  Always refer to this as &PL_sv_undef.

                       SV      PL_sv_undef

       PL_sv_yes
               This is the "true" SV.  See "PL_sv_no".  Always refer to this
               as &PL_sv_yes.

                       SV      PL_sv_yes

REGEXP Functions

       SvRX    Convenience macro to get the REGEXP from a SV. This is
               approximately equivalent to the following snippet:

                   if (SvMAGICAL(sv))
                       mg_get(sv);
                   if (SvROK(sv) &&
                       (tmpsv = (SV*)SvRV(sv)) &&
                       SvTYPE(tmpsv) == SVt_PVMG &&
                       (tmpmg = mg_find(tmpsv, PERL_MAGIC_qr)))
                   {
                       return (REGEXP *)tmpmg->mg_obj;
                   }

               NULL will be returned if a REGEXP* is not found.

                       REGEXP *        SvRX(SV *sv)

       SvRXOK  Returns a boolean indicating whether the SV contains qr magic
               (PERL_MAGIC_qr).

               If you want to do something with the REGEXP* later use SvRX
               instead and check for NULL.

                       bool    SvRXOK(SV* sv)

Simple Exception Handling Macros

       dXCPT   Set up necessary local variables for exception handling.  See
               "Exception Handling" in perlguts.

                               dXCPT;

       XCPT_CATCH
               Introduces a catch block.  See "Exception Handling" in
               perlguts.

       XCPT_RETHROW
               Rethrows a previously caught exception.  See "Exception
               Handling" in perlguts.

                               XCPT_RETHROW;

       XCPT_TRY_END
               Ends a try block.  See "Exception Handling" in perlguts.

       XCPT_TRY_START
               Starts a try block.  See "Exception Handling" in perlguts.

Stack Manipulation Macros

       dMARK   Declare a stack marker variable, "mark", for the XSUB.  See
               "MARK" and "dORIGMARK".

                               dMARK;

       dORIGMARK
               Saves the original stack mark for the XSUB.  See "ORIGMARK".

                               dORIGMARK;

       dSP     Declares a local copy of perl’s stack pointer for the XSUB,
               available via the "SP" macro.  See "SP".

                               dSP;

       EXTEND  Used to extend the argument stack for an XSUB’s return values.
               Once used, guarantees that there is room for at least "nitems"
               to be pushed onto the stack.

                       void    EXTEND(SP, int nitems)

       MARK    Stack marker variable for the XSUB.  See "dMARK".

       mPUSHi  Push an integer onto the stack.  The stack must have room for
               this element.  Does not use "TARG".  See also "PUSHi",
               "mXPUSHi" and "XPUSHi".

                       void    mPUSHi(IV iv)

       mPUSHn  Push a double onto the stack.  The stack must have room for
               this element.  Does not use "TARG".  See also "PUSHn",
               "mXPUSHn" and "XPUSHn".

                       void    mPUSHn(NV nv)

       mPUSHp  Push a string onto the stack.  The stack must have room for
               this element.  The "len" indicates the length of the string.
               Does not use "TARG".  See also "PUSHp", "mXPUSHp" and "XPUSHp".

                       void    mPUSHp(char* str, STRLEN len)

       mPUSHs  Push an SV onto the stack and mortalizes the SV.  The stack
               must have room for this element.  Does not use "TARG".  See
               also "PUSHs" and "mXPUSHs".

                       void    mPUSHs(SV* sv)

       mPUSHu  Push an unsigned integer onto the stack.  The stack must have
               room for this element.  Does not use "TARG".  See also "PUSHu",
               "mXPUSHu" and "XPUSHu".

                       void    mPUSHu(UV uv)

       mXPUSHi Push an integer onto the stack, extending the stack if
               necessary.  Does not use "TARG".  See also "XPUSHi", "mPUSHi"
               and "PUSHi".

                       void    mXPUSHi(IV iv)

       mXPUSHn Push a double onto the stack, extending the stack if necessary.
               Does not use "TARG".  See also "XPUSHn", "mPUSHn" and "PUSHn".

                       void    mXPUSHn(NV nv)

       mXPUSHp Push a string onto the stack, extending the stack if necessary.
               The "len" indicates the length of the string.  Does not use
               "TARG".  See also "XPUSHp", "mPUSHp" and "PUSHp".

                       void    mXPUSHp(char* str, STRLEN len)

       mXPUSHs Push an SV onto the stack, extending the stack if necessary and
               mortalizes the SV.  Does not use "TARG".  See also "XPUSHs" and
               "mPUSHs".

                       void    mXPUSHs(SV* sv)

       mXPUSHu Push an unsigned integer onto the stack, extending the stack if
               necessary.  Does not use "TARG".  See also "XPUSHu", "mPUSHu"
               and "PUSHu".

                       void    mXPUSHu(UV uv)

       ORIGMARK
               The original stack mark for the XSUB.  See "dORIGMARK".

       POPi    Pops an integer off the stack.

                       IV      POPi

       POPl    Pops a long off the stack.

                       long    POPl

       POPn    Pops a double off the stack.

                       NV      POPn

       POPp    Pops a string off the stack. Deprecated. New code should use
               POPpx.

                       char*   POPp

       POPpbytex
               Pops a string off the stack which must consist of bytes i.e.
               characters < 256.

                       char*   POPpbytex

       POPpx   Pops a string off the stack.

                       char*   POPpx

       POPs    Pops an SV off the stack.

                       SV*     POPs

       PUSHi   Push an integer onto the stack.  The stack must have room for
               this element.  Handles ’set’ magic.  Uses "TARG", so "dTARGET"
               or "dXSTARG" should be called to declare it.  Do not call
               multiple "TARG"-oriented macros to return lists from XSUB’s -
               see "mPUSHi" instead.  See also "XPUSHi" and "mXPUSHi".

                       void    PUSHi(IV iv)

       PUSHMARK
               Opening bracket for arguments on a callback.  See "PUTBACK" and
               perlcall.

                       void    PUSHMARK(SP)

       PUSHmortal
               Push a new mortal SV onto the stack.  The stack must have room
               for this element.  Does not use "TARG".  See also "PUSHs",
               "XPUSHmortal" and "XPUSHs".

                       void    PUSHmortal()

       PUSHn   Push a double onto the stack.  The stack must have room for
               this element.  Handles ’set’ magic.  Uses "TARG", so "dTARGET"
               or "dXSTARG" should be called to declare it.  Do not call
               multiple "TARG"-oriented macros to return lists from XSUB’s -
               see "mPUSHn" instead.  See also "XPUSHn" and "mXPUSHn".

                       void    PUSHn(NV nv)

       PUSHp   Push a string onto the stack.  The stack must have room for
               this element.  The "len" indicates the length of the string.
               Handles ’set’ magic.  Uses "TARG", so "dTARGET" or "dXSTARG"
               should be called to declare it.  Do not call multiple
               "TARG"-oriented macros to return lists from XSUB’s - see
               "mPUSHp" instead.  See also "XPUSHp" and "mXPUSHp".

                       void    PUSHp(char* str, STRLEN len)

       PUSHs   Push an SV onto the stack.  The stack must have room for this
               element.  Does not handle ’set’ magic.  Does not use "TARG".
               See also "PUSHmortal", "XPUSHs" and "XPUSHmortal".

                       void    PUSHs(SV* sv)

       PUSHu   Push an unsigned integer onto the stack.  The stack must have
               room for this element.  Handles ’set’ magic.  Uses "TARG", so
               "dTARGET" or "dXSTARG" should be called to declare it.  Do not
               call multiple "TARG"-oriented macros to return lists from
               XSUB’s - see "mPUSHu" instead.  See also "XPUSHu" and
               "mXPUSHu".

                       void    PUSHu(UV uv)

       PUTBACK Closing bracket for XSUB arguments.  This is usually handled by
               "xsubpp".  See "PUSHMARK" and perlcall for other uses.

                               PUTBACK;

       SP      Stack pointer.  This is usually handled by "xsubpp".  See "dSP"
               and "SPAGAIN".

       SPAGAIN Refetch the stack pointer.  Used after a callback.  See
               perlcall.

                               SPAGAIN;

       XPUSHi  Push an integer onto the stack, extending the stack if
               necessary.  Handles ’set’ magic.  Uses "TARG", so "dTARGET" or
               "dXSTARG" should be called to declare it.  Do not call multiple
               "TARG"-oriented macros to return lists from XSUB’s - see
               "mXPUSHi" instead.  See also "PUSHi" and "mPUSHi".

                       void    XPUSHi(IV iv)

       XPUSHmortal
               Push a new mortal SV onto the stack, extending the stack if
               necessary.  Does not use "TARG".  See also "XPUSHs",
               "PUSHmortal" and "PUSHs".

                       void    XPUSHmortal()

       XPUSHn  Push a double onto the stack, extending the stack if necessary.
               Handles ’set’ magic.  Uses "TARG", so "dTARGET" or "dXSTARG"
               should be called to declare it.  Do not call multiple
               "TARG"-oriented macros to return lists from XSUB’s - see
               "mXPUSHn" instead.  See also "PUSHn" and "mPUSHn".

                       void    XPUSHn(NV nv)

       XPUSHp  Push a string onto the stack, extending the stack if necessary.
               The "len" indicates the length of the string.  Handles ’set’
               magic.  Uses "TARG", so "dTARGET" or "dXSTARG" should be called
               to declare it.  Do not call multiple "TARG"-oriented macros to
               return lists from XSUB’s - see "mXPUSHp" instead.  See also
               "PUSHp" and "mPUSHp".

                       void    XPUSHp(char* str, STRLEN len)

       XPUSHs  Push an SV onto the stack, extending the stack if necessary.
               Does not handle ’set’ magic.  Does not use "TARG".  See also
               "XPUSHmortal", "PUSHs" and "PUSHmortal".

                       void    XPUSHs(SV* sv)

       XPUSHu  Push an unsigned integer onto the stack, extending the stack if
               necessary.  Handles ’set’ magic.  Uses "TARG", so "dTARGET" or
               "dXSTARG" should be called to declare it.  Do not call multiple
               "TARG"-oriented macros to return lists from XSUB’s - see
               "mXPUSHu" instead.  See also "PUSHu" and "mPUSHu".

                       void    XPUSHu(UV uv)

       XSRETURN
               Return from XSUB, indicating number of items on the stack.
               This is usually handled by "xsubpp".

                       void    XSRETURN(int nitems)

       XSRETURN_EMPTY
               Return an empty list from an XSUB immediately.

                               XSRETURN_EMPTY;

       XSRETURN_IV
               Return an integer from an XSUB immediately.  Uses "XST_mIV".

                       void    XSRETURN_IV(IV iv)

       XSRETURN_NO
               Return &PL_sv_no from an XSUB immediately.  Uses "XST_mNO".

                               XSRETURN_NO;

       XSRETURN_NV
               Return a double from an XSUB immediately.  Uses "XST_mNV".

                       void    XSRETURN_NV(NV nv)

       XSRETURN_PV
               Return a copy of a string from an XSUB immediately.  Uses
               "XST_mPV".

                       void    XSRETURN_PV(char* str)

       XSRETURN_UNDEF
               Return &PL_sv_undef from an XSUB immediately.  Uses
               "XST_mUNDEF".

                               XSRETURN_UNDEF;

       XSRETURN_UV
               Return an integer from an XSUB immediately.  Uses "XST_mUV".

                       void    XSRETURN_UV(IV uv)

       XSRETURN_YES
               Return &PL_sv_yes from an XSUB immediately.  Uses "XST_mYES".

                               XSRETURN_YES;

       XST_mIV Place an integer into the specified position "pos" on the
               stack.  The value is stored in a new mortal SV.

                       void    XST_mIV(int pos, IV iv)

       XST_mNO Place &PL_sv_no into the specified position "pos" on the stack.

                       void    XST_mNO(int pos)

       XST_mNV Place a double into the specified position "pos" on the stack.
               The value is stored in a new mortal SV.

                       void    XST_mNV(int pos, NV nv)

       XST_mPV Place a copy of a string into the specified position "pos" on
               the stack.  The value is stored in a new mortal SV.

                       void    XST_mPV(int pos, char* str)

       XST_mUNDEF
               Place &PL_sv_undef into the specified position "pos" on the
               stack.

                       void    XST_mUNDEF(int pos)

       XST_mYES
               Place &PL_sv_yes into the specified position "pos" on the
               stack.

                       void    XST_mYES(int pos)

SV Flags

       svtype  An enum of flags for Perl types.  These are found in the file
               sv.h in the "svtype" enum.  Test these flags with the "SvTYPE"
               macro.

       SVt_IV  Integer type flag for scalars.  See "svtype".

       SVt_NV  Double type flag for scalars.  See "svtype".

       SVt_PV  Pointer type flag for scalars.  See "svtype".

       SVt_PVAV
               Type flag for arrays.  See "svtype".

       SVt_PVCV
               Type flag for code refs.  See "svtype".

       SVt_PVHV
               Type flag for hashes.  See "svtype".

       SVt_PVMG
               Type flag for blessed scalars.  See "svtype".

SV Manipulation Functions

       croak_xs_usage
               A specialised variant of "croak()" for emitting the usage
               message for xsubs

                   croak_xs_usage(cv, "eee_yow");

               works out the package name and subroutine name from "cv", and
               then calls "croak()". Hence if "cv" is &ouch::awk, it would
               call "croak" as:

                   Perl_croak(aTHX_ "Usage %s::%s(%s)", "ouch" "awk", "eee_yow");

                       void    croak_xs_usage(const CV *const cv, const char *const params)

       get_sv  Returns the SV of the specified Perl scalar.  "flags" are
               passed to "gv_fetchpv". If "GV_ADD" is set and the Perl
               variable does not exist then it will be created.  If "flags" is
               zero and the variable does not exist then NULL is returned.

               NOTE: the perl_ form of this function is deprecated.

                       SV*     get_sv(const char *name, I32 flags)

       newRV_inc
               Creates an RV wrapper for an SV.  The reference count for the
               original SV is incremented.

                       SV*     newRV_inc(SV* sv)

       newSVpvn_utf8
               Creates a new SV and copies a string into it.  If utf8 is true,
               calls "SvUTF8_on" on the new SV.  Implemented as a wrapper
               around "newSVpvn_flags".

                       SV*     newSVpvn_utf8(NULLOK const char* s, STRLEN len, U32 utf8)

       SvCUR   Returns the length of the string which is in the SV.  See
               "SvLEN".

                       STRLEN  SvCUR(SV* sv)

       SvCUR_set
               Set the current length of the string which is in the SV.  See
               "SvCUR" and "SvIV_set".

                       void    SvCUR_set(SV* sv, STRLEN len)

       SvEND   Returns a pointer to the last character in the string which is
               in the SV.  See "SvCUR".  Access the character as *(SvEND(sv)).

                       char*   SvEND(SV* sv)

       SvGAMAGIC
               Returns true if the SV has get magic or overloading. If either
               is true then the scalar is active data, and has the potential
               to return a new value every time it is accessed. Hence you must
               be careful to only read it once per user logical operation and
               work with that returned value. If neither is true then the
               scalar’s value cannot change unless written to.

                       U32     SvGAMAGIC(SV* sv)

       SvGROW  Expands the character buffer in the SV so that it has room for
               the indicated number of bytes (remember to reserve space for an
               extra trailing NUL character).  Calls "sv_grow" to perform the
               expansion if necessary.  Returns a pointer to the character
               buffer.

                       char *  SvGROW(SV* sv, STRLEN len)

       SvIOK   Returns a U32 value indicating whether the SV contains an
               integer.

                       U32     SvIOK(SV* sv)

       SvIOKp  Returns a U32 value indicating whether the SV contains an
               integer.  Checks the private setting.  Use "SvIOK" instead.

                       U32     SvIOKp(SV* sv)

       SvIOK_notUV
               Returns a boolean indicating whether the SV contains a signed
               integer.

                       bool    SvIOK_notUV(SV* sv)

       SvIOK_off
               Unsets the IV status of an SV.

                       void    SvIOK_off(SV* sv)

       SvIOK_on
               Tells an SV that it is an integer.

                       void    SvIOK_on(SV* sv)

       SvIOK_only
               Tells an SV that it is an integer and disables all other OK
               bits.

                       void    SvIOK_only(SV* sv)

       SvIOK_only_UV
               Tells and SV that it is an unsigned integer and disables all
               other OK bits.

                       void    SvIOK_only_UV(SV* sv)

       SvIOK_UV
               Returns a boolean indicating whether the SV contains an
               unsigned integer.

                       bool    SvIOK_UV(SV* sv)

       SvIsCOW Returns a boolean indicating whether the SV is Copy-On-Write.
               (either shared hash key scalars, or full Copy On Write scalars
               if 5.9.0 is configured for COW)

                       bool    SvIsCOW(SV* sv)

       SvIsCOW_shared_hash
               Returns a boolean indicating whether the SV is Copy-On-Write
               shared hash key scalar.

                       bool    SvIsCOW_shared_hash(SV* sv)

       SvIV    Coerces the given SV to an integer and returns it. See "SvIVx"
               for a version which guarantees to evaluate sv only once.

                       IV      SvIV(SV* sv)

       SvIVX   Returns the raw value in the SV’s IV slot, without checks or
               conversions.  Only use when you are sure SvIOK is true. See
               also "SvIV()".

                       IV      SvIVX(SV* sv)

       SvIVx   Coerces the given SV to an integer and returns it. Guarantees
               to evaluate "sv" only once. Only use this if "sv" is an
               expression with side effects, otherwise use the more efficient
               "SvIV".

                       IV      SvIVx(SV* sv)

       SvIV_nomg
               Like "SvIV" but doesn’t process magic.

                       IV      SvIV_nomg(SV* sv)

       SvIV_set
               Set the value of the IV pointer in sv to val.  It is possible
               to perform the same function of this macro with an lvalue
               assignment to "SvIVX".  With future Perls, however, it will be
               more efficient to use "SvIV_set" instead of the lvalue
               assignment to "SvIVX".

                       void    SvIV_set(SV* sv, IV val)

       SvLEN   Returns the size of the string buffer in the SV, not including
               any part attributable to "SvOOK".  See "SvCUR".

                       STRLEN  SvLEN(SV* sv)

       SvLEN_set
               Set the actual length of the string which is in the SV.  See
               "SvIV_set".

                       void    SvLEN_set(SV* sv, STRLEN len)

       SvMAGIC_set
               Set the value of the MAGIC pointer in sv to val.  See
               "SvIV_set".

                       void    SvMAGIC_set(SV* sv, MAGIC* val)

       SvNIOK  Returns a U32 value indicating whether the SV contains a
               number, integer or double.

                       U32     SvNIOK(SV* sv)

       SvNIOKp Returns a U32 value indicating whether the SV contains a
               number, integer or double.  Checks the private setting.  Use
               "SvNIOK" instead.

                       U32     SvNIOKp(SV* sv)

       SvNIOK_off
               Unsets the NV/IV status of an SV.

                       void    SvNIOK_off(SV* sv)

       SvNOK   Returns a U32 value indicating whether the SV contains a
               double.

                       U32     SvNOK(SV* sv)

       SvNOKp  Returns a U32 value indicating whether the SV contains a
               double.  Checks the private setting.  Use "SvNOK" instead.

                       U32     SvNOKp(SV* sv)

       SvNOK_off
               Unsets the NV status of an SV.

                       void    SvNOK_off(SV* sv)

       SvNOK_on
               Tells an SV that it is a double.

                       void    SvNOK_on(SV* sv)

       SvNOK_only
               Tells an SV that it is a double and disables all other OK bits.

                       void    SvNOK_only(SV* sv)

       SvNV    Coerce the given SV to a double and return it. See "SvNVx" for
               a version which guarantees to evaluate sv only once.

                       NV      SvNV(SV* sv)

       SvNVX   Returns the raw value in the SV’s NV slot, without checks or
               conversions.  Only use when you are sure SvNOK is true. See
               also "SvNV()".

                       NV      SvNVX(SV* sv)

       SvNVx   Coerces the given SV to a double and returns it. Guarantees to
               evaluate "sv" only once. Only use this if "sv" is an expression
               with side effects, otherwise use the more efficient "SvNV".

                       NV      SvNVx(SV* sv)

       SvNV_set
               Set the value of the NV pointer in sv to val.  See "SvIV_set".

                       void    SvNV_set(SV* sv, NV val)

       SvOK    Returns a U32 value indicating whether the value is defined.
               This is only meaningful for scalars.

                       U32     SvOK(SV* sv)

       SvOOK   Returns a U32 indicating whether the SvIVX is a valid offset
               value for the SvPVX.  This hack is used internally to speed up
               removal of characters from the beginning of a SvPV.  When SvOOK
               is true, then the start of the allocated string buffer is
               really (SvPVX - SvIVX).

                       U32     SvOOK(SV* sv)

       SvPOK   Returns a U32 value indicating whether the SV contains a
               character string.

                       U32     SvPOK(SV* sv)

       SvPOKp  Returns a U32 value indicating whether the SV contains a
               character string.  Checks the private setting.  Use "SvPOK"
               instead.

                       U32     SvPOKp(SV* sv)

       SvPOK_off
               Unsets the PV status of an SV.

                       void    SvPOK_off(SV* sv)

       SvPOK_on
               Tells an SV that it is a string.

                       void    SvPOK_on(SV* sv)

       SvPOK_only
               Tells an SV that it is a string and disables all other OK bits.
               Will also turn off the UTF-8 status.

                       void    SvPOK_only(SV* sv)

       SvPOK_only_UTF8
               Tells an SV that it is a string and disables all other OK bits,
               and leaves the UTF-8 status as it was.

                       void    SvPOK_only_UTF8(SV* sv)

       SvPV    Returns a pointer to the string in the SV, or a stringified
               form of the SV if the SV does not contain a string.  The SV may
               cache the stringified version becoming "SvPOK".  Handles ’get’
               magic. See also "SvPVx" for a version which guarantees to
               evaluate sv only once.

                       char*   SvPV(SV* sv, STRLEN len)

       SvPVbyte
               Like "SvPV", but converts sv to byte representation first if
               necessary.

                       char*   SvPVbyte(SV* sv, STRLEN len)

       SvPVbytex
               Like "SvPV", but converts sv to byte representation first if
               necessary.  Guarantees to evaluate sv only once; use the more
               efficient "SvPVbyte" otherwise.

                       char*   SvPVbytex(SV* sv, STRLEN len)

       SvPVbytex_force
               Like "SvPV_force", but converts sv to byte representation first
               if necessary.  Guarantees to evaluate sv only once; use the
               more efficient "SvPVbyte_force" otherwise.

                       char*   SvPVbytex_force(SV* sv, STRLEN len)

       SvPVbyte_force
               Like "SvPV_force", but converts sv to byte representation first
               if necessary.

                       char*   SvPVbyte_force(SV* sv, STRLEN len)

       SvPVbyte_nolen
               Like "SvPV_nolen", but converts sv to byte representation first
               if necessary.

                       char*   SvPVbyte_nolen(SV* sv)

       SvPVutf8
               Like "SvPV", but converts sv to utf8 first if necessary.

                       char*   SvPVutf8(SV* sv, STRLEN len)

       SvPVutf8x
               Like "SvPV", but converts sv to utf8 first if necessary.
               Guarantees to evaluate sv only once; use the more efficient
               "SvPVutf8" otherwise.

                       char*   SvPVutf8x(SV* sv, STRLEN len)

       SvPVutf8x_force
               Like "SvPV_force", but converts sv to utf8 first if necessary.
               Guarantees to evaluate sv only once; use the more efficient
               "SvPVutf8_force" otherwise.

                       char*   SvPVutf8x_force(SV* sv, STRLEN len)

       SvPVutf8_force
               Like "SvPV_force", but converts sv to utf8 first if necessary.

                       char*   SvPVutf8_force(SV* sv, STRLEN len)

       SvPVutf8_nolen
               Like "SvPV_nolen", but converts sv to utf8 first if necessary.

                       char*   SvPVutf8_nolen(SV* sv)

       SvPVX   Returns a pointer to the physical string in the SV.  The SV
               must contain a string.

                       char*   SvPVX(SV* sv)

       SvPVx   A version of "SvPV" which guarantees to evaluate "sv" only
               once.  Only use this if "sv" is an expression with side
               effects, otherwise use the more efficient "SvPVX".

                       char*   SvPVx(SV* sv, STRLEN len)

       SvPV_force
               Like "SvPV" but will force the SV into containing just a string
               ("SvPOK_only").  You want force if you are going to update the
               "SvPVX" directly.

                       char*   SvPV_force(SV* sv, STRLEN len)

       SvPV_force_nomg
               Like "SvPV" but will force the SV into containing just a string
               ("SvPOK_only").  You want force if you are going to update the
               "SvPVX" directly. Doesn’t process magic.

                       char*   SvPV_force_nomg(SV* sv, STRLEN len)

       SvPV_nolen
               Returns a pointer to the string in the SV, or a stringified
               form of the SV if the SV does not contain a string.  The SV may
               cache the stringified form becoming "SvPOK".  Handles ’get’
               magic.

                       char*   SvPV_nolen(SV* sv)

       SvPV_nomg
               Like "SvPV" but doesn’t process magic.

                       char*   SvPV_nomg(SV* sv, STRLEN len)

       SvPV_set
               Set the value of the PV pointer in sv to val.  See "SvIV_set".

                       void    SvPV_set(SV* sv, char* val)

       SvREFCNT
               Returns the value of the object’s reference count.

                       U32     SvREFCNT(SV* sv)

       SvREFCNT_dec
               Decrements the reference count of the given SV.

                       void    SvREFCNT_dec(SV* sv)

       SvREFCNT_inc
               Increments the reference count of the given SV.

               All of the following SvREFCNT_inc* macros are optimized
               versions of SvREFCNT_inc, and can be replaced with
               SvREFCNT_inc.

                       SV*     SvREFCNT_inc(SV* sv)

       SvREFCNT_inc_NN
               Same as SvREFCNT_inc, but can only be used if you know sv is
               not NULL.  Since we don’t have to check the NULLness, it’s
               faster and smaller.

                       SV*     SvREFCNT_inc_NN(SV* sv)

       SvREFCNT_inc_simple
               Same as SvREFCNT_inc, but can only be used with expressions
               without side effects.  Since we don’t have to store a temporary
               value, it’s faster.

                       SV*     SvREFCNT_inc_simple(SV* sv)

       SvREFCNT_inc_simple_NN
               Same as SvREFCNT_inc_simple, but can only be used if you know
               sv is not NULL.  Since we don’t have to check the NULLness,
               it’s faster and smaller.

                       SV*     SvREFCNT_inc_simple_NN(SV* sv)

       SvREFCNT_inc_simple_void
               Same as SvREFCNT_inc_simple, but can only be used if you don’t
               need the return value.  The macro doesn’t need to return a
               meaningful value.

                       void    SvREFCNT_inc_simple_void(SV* sv)

       SvREFCNT_inc_simple_void_NN
               Same as SvREFCNT_inc, but can only be used if you don’t need
               the return value, and you know that sv is not NULL.  The macro
               doesn’t need to return a meaningful value, or check for
               NULLness, so it’s smaller and faster.

                       void    SvREFCNT_inc_simple_void_NN(SV* sv)

       SvREFCNT_inc_void
               Same as SvREFCNT_inc, but can only be used if you don’t need
               the return value.  The macro doesn’t need to return a
               meaningful value.

                       void    SvREFCNT_inc_void(SV* sv)

       SvREFCNT_inc_void_NN
               Same as SvREFCNT_inc, but can only be used if you don’t need
               the return value, and you know that sv is not NULL.  The macro
               doesn’t need to return a meaningful value, or check for
               NULLness, so it’s smaller and faster.

                       void    SvREFCNT_inc_void_NN(SV* sv)

       SvROK   Tests if the SV is an RV.

                       U32     SvROK(SV* sv)

       SvROK_off
               Unsets the RV status of an SV.

                       void    SvROK_off(SV* sv)

       SvROK_on
               Tells an SV that it is an RV.

                       void    SvROK_on(SV* sv)

       SvRV    Dereferences an RV to return the SV.

                       SV*     SvRV(SV* sv)

       SvRV_set
               Set the value of the RV pointer in sv to val.  See "SvIV_set".

                       void    SvRV_set(SV* sv, SV* val)

       SvSTASH Returns the stash of the SV.

                       HV*     SvSTASH(SV* sv)

       SvSTASH_set
               Set the value of the STASH pointer in sv to val.  See
               "SvIV_set".

                       void    SvSTASH_set(SV* sv, HV* val)

       SvTAINT Taints an SV if tainting is enabled.

                       void    SvTAINT(SV* sv)

       SvTAINTED
               Checks to see if an SV is tainted. Returns TRUE if it is, FALSE
               if not.

                       bool    SvTAINTED(SV* sv)

       SvTAINTED_off
               Untaints an SV. Be very careful with this routine, as it short-
               circuits some of Perl’s fundamental security features. XS
               module authors should not use this function unless they fully
               understand all the implications of unconditionally untainting
               the value. Untainting should be done in the standard perl
               fashion, via a carefully crafted regexp, rather than directly
               untainting variables.

                       void    SvTAINTED_off(SV* sv)

       SvTAINTED_on
               Marks an SV as tainted if tainting is enabled.

                       void    SvTAINTED_on(SV* sv)

       SvTRUE  Returns a boolean indicating whether Perl would evaluate the SV
               as true or false.  See SvOK() for a defined/undefined test.
               Does not handle ’get’ magic.

                       bool    SvTRUE(SV* sv)

       SvTYPE  Returns the type of the SV.  See "svtype".

                       svtype  SvTYPE(SV* sv)

       SvUOK   Returns a boolean indicating whether the SV contains an
               unsigned integer.

                       bool    SvUOK(SV* sv)

       SvUPGRADE
               Used to upgrade an SV to a more complex form.  Uses
               "sv_upgrade" to perform the upgrade if necessary.  See
               "svtype".

                       void    SvUPGRADE(SV* sv, svtype type)

       SvUTF8  Returns a U32 value indicating whether the SV contains UTF-8
               encoded data.  Call this after SvPV() in case any call to
               string overloading updates the internal flag.

                       U32     SvUTF8(SV* sv)

       SvUTF8_off
               Unsets the UTF-8 status of an SV.

                       void    SvUTF8_off(SV *sv)

       SvUTF8_on
               Turn on the UTF-8 status of an SV (the data is not changed,
               just the flag).  Do not use frivolously.

                       void    SvUTF8_on(SV *sv)

       SvUV    Coerces the given SV to an unsigned integer and returns it.
               See "SvUVx" for a version which guarantees to evaluate sv only
               once.

                       UV      SvUV(SV* sv)

       SvUVX   Returns the raw value in the SV’s UV slot, without checks or
               conversions.  Only use when you are sure SvIOK is true. See
               also "SvUV()".

                       UV      SvUVX(SV* sv)

       SvUVx   Coerces the given SV to an unsigned integer and returns it.
               Guarantees to "sv" only once. Only use this if "sv" is an
               expression with side effects, otherwise use the more efficient
               "SvUV".

                       UV      SvUVx(SV* sv)

       SvUV_nomg
               Like "SvUV" but doesn’t process magic.

                       UV      SvUV_nomg(SV* sv)

       SvUV_set
               Set the value of the UV pointer in sv to val.  See "SvIV_set".

                       void    SvUV_set(SV* sv, UV val)

       SvVOK   Returns a boolean indicating whether the SV contains a
               v-string.

                       bool    SvVOK(SV* sv)

       sv_catpvn_nomg
               Like "sv_catpvn" but doesn’t process magic.

                       void    sv_catpvn_nomg(SV* sv, const char* ptr, STRLEN len)

       sv_catsv_nomg
               Like "sv_catsv" but doesn’t process magic.

                       void    sv_catsv_nomg(SV* dsv, SV* ssv)

       sv_derived_from
               Returns a boolean indicating whether the SV is derived from the
               specified class at the C level.  To check derivation at the
               Perl level, call "isa()" as a normal Perl method.

                       bool    sv_derived_from(SV* sv, const char* name)

       sv_does Returns a boolean indicating whether the SV performs a
               specific, named role.  The SV can be a Perl object or the name
               of a Perl class.

                       bool    sv_does(SV* sv, const char* name)

       sv_report_used
               Dump the contents of all SVs not yet freed. (Debugging aid).

                       void    sv_report_used()

       sv_setsv_nomg
               Like "sv_setsv" but doesn’t process magic.

                       void    sv_setsv_nomg(SV* dsv, SV* ssv)

       sv_utf8_upgrade_nomg
               Like sv_utf8_upgrade, but doesn’t do magic on "sv"

                       STRLEN  sv_utf8_upgrade_nomg(NN SV *sv)

SV-Body Allocation

       looks_like_number
               Test if the content of an SV looks like a number (or is a
               number).  "Inf" and "Infinity" are treated as numbers (so will
               not issue a non-numeric warning), even if your atof() doesn’t
               grok them.

                       I32     looks_like_number(SV* sv)

       newRV_noinc
               Creates an RV wrapper for an SV.  The reference count for the
               original SV is not incremented.

                       SV*     newRV_noinc(SV* sv)

       newSV   Creates a new SV.  A non-zero "len" parameter indicates the
               number of bytes of preallocated string space the SV should
               have.  An extra byte for a trailing NUL is also reserved.
               (SvPOK is not set for the SV even if string space is
               allocated.)  The reference count for the new SV is set to 1.

               In 5.9.3, newSV() replaces the older NEWSV() API, and drops the
               first parameter, x, a debug aid which allowed callers to
               identify themselves.  This aid has been superseded by a new
               build option, PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhack).
               The older API is still there for use in XS modules supporting
               older perls.

                       SV*     newSV(STRLEN len)

       newSVhek
               Creates a new SV from the hash key structure.  It will generate
               scalars that point to the shared string table where possible.
               Returns a new (undefined) SV if the hek is NULL.

                       SV*     newSVhek(const HEK *hek)

       newSViv Creates a new SV and copies an integer into it.  The reference
               count for the SV is set to 1.

                       SV*     newSViv(IV i)

       newSVnv Creates a new SV and copies a floating point value into it.
               The reference count for the SV is set to 1.

                       SV*     newSVnv(NV n)

       newSVpv Creates a new SV and copies a string into it.  The reference
               count for the SV is set to 1.  If "len" is zero, Perl will
               compute the length using strlen().  For efficiency, consider
               using "newSVpvn" instead.

                       SV*     newSVpv(const char* s, STRLEN len)

       newSVpvf
               Creates a new SV and initializes it with the string formatted
               like "sprintf".

                       SV*     newSVpvf(const char* pat, ...)

       newSVpvn
               Creates a new SV and copies a string into it.  The reference
               count for the SV is set to 1.  Note that if "len" is zero, Perl
               will create a zero length string.  You are responsible for
               ensuring that the source string is at least "len" bytes long.
               If the "s" argument is NULL the new SV will be undefined.

                       SV*     newSVpvn(const char* s, STRLEN len)

       newSVpvn_flags
               Creates a new SV and copies a string into it.  The reference
               count for the SV is set to 1.  Note that if "len" is zero, Perl
               will create a zero length string.  You are responsible for
               ensuring that the source string is at least "len" bytes long.
               If the "s" argument is NULL the new SV will be undefined.
               Currently the only flag bits accepted are "SVf_UTF8" and
               "SVs_TEMP".  If "SVs_TEMP" is set, then "sv2mortal()" is called
               on the result before returning. If "SVf_UTF8" is set, then it
               will be set on the new SV.  "newSVpvn_utf8()" is a convenience
               wrapper for this function, defined as

                   #define newSVpvn_utf8(s, len, u)                    \
                       newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)

                       SV*     newSVpvn_flags(const char* s, STRLEN len, U32 flags)

       newSVpvn_share
               Creates a new SV with its SvPVX_const pointing to a shared
               string in the string table. If the string does not already
               exist in the table, it is created first.  Turns on READONLY and
               FAKE. If the "hash" parameter is non-zero, that value is used;
               otherwise the hash is computed. The string’s hash can be later
               be retrieved from the SV with the "SvSHARED_HASH()" macro. The
               idea here is that as the string table is used for shared hash
               keys these strings will have SvPVX_const == HeKEY and hash
               lookup will avoid string compare.

                       SV*     newSVpvn_share(const char* s, I32 len, U32 hash)

       newSVpvs
               Like "newSVpvn", but takes a literal string instead of a
               string/length pair.

                       SV*     newSVpvs(const char* s)

       newSVpvs_flags
               Like "newSVpvn_flags", but takes a literal string instead of a
               string/length pair.

                       SV*     newSVpvs_flags(const char* s, U32 flags)

       newSVpvs_share
               Like "newSVpvn_share", but takes a literal string instead of a
               string/length pair and omits the hash parameter.

                       SV*     newSVpvs_share(const char* s)

       newSVrv Creates a new SV for the RV, "rv", to point to.  If "rv" is not
               an RV then it will be upgraded to one.  If "classname" is non-
               null then the new SV will be blessed in the specified package.
               The new SV is returned and its reference count is 1.

                       SV*     newSVrv(SV* rv, const char* classname)

       newSVsv Creates a new SV which is an exact duplicate of the original
               SV.  (Uses "sv_setsv").

                       SV*     newSVsv(SV* old)

       newSVuv Creates a new SV and copies an unsigned integer into it.  The
               reference count for the SV is set to 1.

                       SV*     newSVuv(UV u)

       newSV_type
               Creates a new SV, of the type specified.  The reference count
               for the new SV is set to 1.

                       SV*     newSV_type(svtype type)

       sv_2bool
               This function is only called on magical items, and is only used
               by sv_true() or its macro equivalent.

                       bool    sv_2bool(SV* sv)

       sv_2cv  Using various gambits, try to get a CV from an SV; in addition,
               try if possible to set *st and *gvp to the stash and GV
               associated with it.  The flags in "lref" are passed to
               sv_fetchsv.

                       CV*     sv_2cv(SV* sv, HV** st, GV** gvp, I32 lref)

       sv_2io  Using various gambits, try to get an IO from an SV: the IO slot
               if its a GV; or the recursive result if we’re an RV; or the IO
               slot of the symbol named after the PV if we’re a string.

                       IO*     sv_2io(SV* sv)

       sv_2iv_flags
               Return the integer value of an SV, doing any necessary string
               conversion.  If flags includes SV_GMAGIC, does an mg_get()
               first.  Normally used via the "SvIV(sv)" and "SvIVx(sv)"
               macros.

                       IV      sv_2iv_flags(SV* sv, I32 flags)

       sv_2mortal
               Marks an existing SV as mortal.  The SV will be destroyed
               "soon", either by an explicit call to FREETMPS, or by an
               implicit call at places such as statement boundaries.  SvTEMP()
               is turned on which means that the SV’s string buffer can be
               "stolen" if this SV is copied. See also "sv_newmortal" and
               "sv_mortalcopy".

                       SV*     sv_2mortal(SV* sv)

       sv_2nv  Return the num value of an SV, doing any necessary string or
               integer conversion, magic etc. Normally used via the "SvNV(sv)"
               and "SvNVx(sv)" macros.

                       NV      sv_2nv(SV* sv)

       sv_2pvbyte
               Return a pointer to the byte-encoded representation of the SV,
               and set *lp to its length.  May cause the SV to be downgraded
               from UTF-8 as a side-effect.

               Usually accessed via the "SvPVbyte" macro.

                       char*   sv_2pvbyte(SV* sv, STRLEN* lp)

       sv_2pvutf8
               Return a pointer to the UTF-8-encoded representation of the SV,
               and set *lp to its length.  May cause the SV to be upgraded to
               UTF-8 as a side-effect.

               Usually accessed via the "SvPVutf8" macro.

                       char*   sv_2pvutf8(SV* sv, STRLEN* lp)

       sv_2pv_flags
               Returns a pointer to the string value of an SV, and sets *lp to
               its length.  If flags includes SV_GMAGIC, does an mg_get()
               first. Coerces sv to a string if necessary.  Normally invoked
               via the "SvPV_flags" macro. "sv_2pv()" and "sv_2pv_nomg"
               usually end up here too.

                       char*   sv_2pv_flags(SV* sv, STRLEN* lp, I32 flags)

       sv_2uv_flags
               Return the unsigned integer value of an SV, doing any necessary
               string conversion.  If flags includes SV_GMAGIC, does an
               mg_get() first.  Normally used via the "SvUV(sv)" and
               "SvUVx(sv)" macros.

                       UV      sv_2uv_flags(SV* sv, I32 flags)

       sv_backoff
               Remove any string offset. You should normally use the
               "SvOOK_off" macro wrapper instead.

                       int     sv_backoff(SV* sv)

       sv_bless
               Blesses an SV into a specified package.  The SV must be an RV.
               The package must be designated by its stash (see
               "gv_stashpv()").  The reference count of the SV is unaffected.

                       SV*     sv_bless(SV* sv, HV* stash)

       sv_catpv
               Concatenates the string onto the end of the string which is in
               the SV.  If the SV has the UTF-8 status set, then the bytes
               appended should be valid UTF-8.  Handles ’get’ magic, but not
               ’set’ magic.  See "sv_catpv_mg".

                       void    sv_catpv(SV* sv, const char* ptr)

       sv_catpvf
               Processes its arguments like "sprintf" and appends the
               formatted output to an SV.  If the appended data contains
               "wide" characters (including, but not limited to, SVs with a
               UTF-8 PV formatted with %s, and characters >255 formatted with
               %c), the original SV might get upgraded to UTF-8.  Handles
               ’get’ magic, but not ’set’ magic.  See "sv_catpvf_mg". If the
               original SV was UTF-8, the pattern should be valid UTF-8; if
               the original SV was bytes, the pattern should be too.

                       void    sv_catpvf(SV* sv, const char* pat, ...)

       sv_catpvf_mg
               Like "sv_catpvf", but also handles ’set’ magic.

                       void    sv_catpvf_mg(SV *sv, const char* pat, ...)

       sv_catpvn
               Concatenates the string onto the end of the string which is in
               the SV.  The "len" indicates number of bytes to copy.  If the
               SV has the UTF-8 status set, then the bytes appended should be
               valid UTF-8.  Handles ’get’ magic, but not ’set’ magic.  See
               "sv_catpvn_mg".

                       void    sv_catpvn(SV *dsv, const char *sstr, STRLEN len)

       sv_catpvn_flags
               Concatenates the string onto the end of the string which is in
               the SV.  The "len" indicates number of bytes to copy.  If the
               SV has the UTF-8 status set, then the bytes appended should be
               valid UTF-8.  If "flags" has "SV_GMAGIC" bit set, will "mg_get"
               on "dsv" if appropriate, else not. "sv_catpvn" and
               "sv_catpvn_nomg" are implemented in terms of this function.

                       void    sv_catpvn_flags(SV *dstr, const char *sstr, STRLEN len, I32 flags)

       sv_catpvs
               Like "sv_catpvn", but takes a literal string instead of a
               string/length pair.

                       void    sv_catpvs(SV* sv, const char* s)

       sv_catpv_mg
               Like "sv_catpv", but also handles ’set’ magic.

                       void    sv_catpv_mg(SV *sv, const char *ptr)

       sv_catsv
               Concatenates the string from SV "ssv" onto the end of the
               string in SV "dsv".  Modifies "dsv" but not "ssv".  Handles
               ’get’ magic, but not ’set’ magic.  See "sv_catsv_mg".

                       void    sv_catsv(SV *dstr, SV *sstr)

       sv_catsv_flags
               Concatenates the string from SV "ssv" onto the end of the
               string in SV "dsv".  Modifies "dsv" but not "ssv".  If "flags"
               has "SV_GMAGIC" bit set, will "mg_get" on the SVs if
               appropriate, else not. "sv_catsv" and "sv_catsv_nomg" are
               implemented in terms of this function.

                       void    sv_catsv_flags(SV* dsv, SV* ssv, I32 flags)

       sv_chop Efficient removal of characters from the beginning of the
               string buffer.  SvPOK(sv) must be true and the "ptr" must be a
               pointer to somewhere inside the string buffer.  The "ptr"
               becomes the first character of the adjusted string. Uses the
               "OOK hack".  Beware: after this function returns, "ptr" and
               SvPVX_const(sv) may no longer refer to the same chunk of data.

                       void    sv_chop(SV* sv, const char* ptr)

       sv_clear
               Clear an SV: call any destructors, free up any memory used by
               the body, and free the body itself. The SV’s head is not freed,
               although its type is set to all 1’s so that it won’t
               inadvertently be assumed to be live during global destruction
               etc.  This function should only be called when REFCNT is zero.
               Most of the time you’ll want to call "sv_free()" (or its macro
               wrapper "SvREFCNT_dec") instead.

                       void    sv_clear(SV* sv)

       sv_cmp  Compares the strings in two SVs.  Returns -1, 0, or 1
               indicating whether the string in "sv1" is less than, equal to,
               or greater than the string in "sv2". Is UTF-8 and ’use bytes’
               aware, handles get magic, and will coerce its args to strings
               if necessary.  See also "sv_cmp_locale".

                       I32     sv_cmp(SV* sv1, SV* sv2)

       sv_cmp_locale
               Compares the strings in two SVs in a locale-aware manner. Is
               UTF-8 and ’use bytes’ aware, handles get magic, and will coerce
               its args to strings if necessary.  See also "sv_cmp".

                       I32     sv_cmp_locale(SV* sv1, SV* sv2)

       sv_collxfrm
               Add Collate Transform magic to an SV if it doesn’t already have
               it.

               Any scalar variable may carry PERL_MAGIC_collxfrm magic that
               contains the scalar data of the variable, but transformed to
               such a format that a normal memory comparison can be used to
               compare the data according to the locale settings.

                       char*   sv_collxfrm(SV* sv, STRLEN* nxp)

       sv_copypv
               Copies a stringified representation of the source SV into the
               destination SV.  Automatically performs any necessary mg_get
               and coercion of numeric values into strings.  Guaranteed to
               preserve UTF8 flag even from overloaded objects.  Similar in
               nature to sv_2pv[_flags] but operates directly on an SV instead
               of just the string.  Mostly uses sv_2pv_flags to do its work,
               except when that would lose the UTF-8’ness of the PV.

                       void    sv_copypv(SV* dsv, SV* ssv)

       sv_dec  Auto-decrement of the value in the SV, doing string to numeric
               conversion if necessary. Handles ’get’ magic.

                       void    sv_dec(SV* sv)

       sv_eq   Returns a boolean indicating whether the strings in the two SVs
               are identical. Is UTF-8 and ’use bytes’ aware, handles get
               magic, and will coerce its args to strings if necessary.

                       I32     sv_eq(SV* sv1, SV* sv2)

       sv_force_normal_flags
               Undo various types of fakery on an SV: if the PV is a shared
               string, make a private copy; if we’re a ref, stop refing; if
               we’re a glob, downgrade to an xpvmg; if we’re a copy-on-write
               scalar, this is the on-write time when we do the copy, and is
               also used locally. If "SV_COW_DROP_PV" is set then a copy-on-
               write scalar drops its PV buffer (if any) and becomes SvPOK_off
               rather than making a copy. (Used where this scalar is about to
               be set to some other value.) In addition, the "flags" parameter
               gets passed to "sv_unref_flags()" when unrefing.
               "sv_force_normal" calls this function with flags set to 0.

                       void    sv_force_normal_flags(SV *sv, U32 flags)

       sv_free Decrement an SV’s reference count, and if it drops to zero,
               call "sv_clear" to invoke destructors and free up any memory
               used by the body; finally, deallocate the SV’s head itself.
               Normally called via a wrapper macro "SvREFCNT_dec".

                       void    sv_free(SV* sv)

       sv_gets Get a line from the filehandle and store it into the SV,
               optionally appending to the currently-stored string.

                       char*   sv_gets(SV* sv, PerlIO* fp, I32 append)

       sv_grow Expands the character buffer in the SV.  If necessary, uses
               "sv_unref" and upgrades the SV to "SVt_PV".  Returns a pointer
               to the character buffer.  Use the "SvGROW" wrapper instead.

                       char*   sv_grow(SV* sv, STRLEN newlen)

       sv_inc  Auto-increment of the value in the SV, doing string to numeric
               conversion if necessary. Handles ’get’ magic.

                       void    sv_inc(SV* sv)

       sv_insert
               Inserts a string at the specified offset/length within the SV.
               Similar to the Perl substr() function. Handles get magic.

                       void    sv_insert(SV *bigstr, STRLEN offset, STRLEN len, const char *little, STRLEN littlelen)

       sv_insert_flags
               Same as "sv_insert", but the extra "flags" are passed the
               "SvPV_force_flags" that applies to "bigstr".

                       void    sv_insert_flags(SV *const bigstr, const STRLEN offset, const STRLEN len, const char *const little, const STRLEN littlelen, const U32 flags)

       sv_isa  Returns a boolean indicating whether the SV is blessed into the
               specified class.  This does not check for subtypes; use
               "sv_derived_from" to verify an inheritance relationship.

                       int     sv_isa(SV* sv, const char* name)

       sv_isobject
               Returns a boolean indicating whether the SV is an RV pointing
               to a blessed object.  If the SV is not an RV, or if the object
               is not blessed, then this will return false.

                       int     sv_isobject(SV* sv)

       sv_len  Returns the length of the string in the SV. Handles magic and
               type coercion.  See also "SvCUR", which gives raw access to the
               xpv_cur slot.

                       STRLEN  sv_len(SV* sv)

       sv_len_utf8
               Returns the number of characters in the string in an SV,
               counting wide UTF-8 bytes as a single character. Handles magic
               and type coercion.

                       STRLEN  sv_len_utf8(SV* sv)

       sv_magic
               Adds magic to an SV. First upgrades "sv" to type "SVt_PVMG" if
               necessary, then adds a new magic item of type "how" to the head
               of the magic list.

               See "sv_magicext" (which "sv_magic" now calls) for a
               description of the handling of the "name" and "namlen"
               arguments.

               You need to use "sv_magicext" to add magic to SvREADONLY SVs
               and also to add more than one instance of the same ’how’.

                       void    sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen)

       sv_magicext
               Adds magic to an SV, upgrading it if necessary. Applies the
               supplied vtable and returns a pointer to the magic added.

               Note that "sv_magicext" will allow things that "sv_magic" will
               not.  In particular, you can add magic to SvREADONLY SVs, and
               add more than one instance of the same ’how’.

               If "namlen" is greater than zero then a "savepvn" copy of
               "name" is stored, if "namlen" is zero then "name" is stored as-
               is and - as another special case - if "(name && namlen ==
               HEf_SVKEY)" then "name" is assumed to contain an "SV*" and is
               stored as-is with its REFCNT incremented.

               (This is now used as a subroutine by "sv_magic".)

                       MAGIC * sv_magicext(SV* sv, SV* obj, int how, const MGVTBL *vtbl, const char* name, I32 namlen)

       sv_mortalcopy
               Creates a new SV which is a copy of the original SV (using
               "sv_setsv").  The new SV is marked as mortal. It will be
               destroyed "soon", either by an explicit call to FREETMPS, or by
               an implicit call at places such as statement boundaries.  See
               also "sv_newmortal" and "sv_2mortal".

                       SV*     sv_mortalcopy(SV* oldsv)

       sv_newmortal
               Creates a new null SV which is mortal.  The reference count of
               the SV is set to 1. It will be destroyed "soon", either by an
               explicit call to FREETMPS, or by an implicit call at places
               such as statement boundaries.  See also "sv_mortalcopy" and
               "sv_2mortal".

                       SV*     sv_newmortal()

       sv_newref
               Increment an SV’s reference count. Use the "SvREFCNT_inc()"
               wrapper instead.

                       SV*     sv_newref(SV* sv)

       sv_pos_b2u
               Converts the value pointed to by offsetp from a count of bytes
               from the start of the string, to a count of the equivalent
               number of UTF-8 chars.  Handles magic and type coercion.

                       void    sv_pos_b2u(SV* sv, I32* offsetp)

       sv_pos_u2b
               Converts the value pointed to by offsetp from a count of UTF-8
               chars from the start of the string, to a count of the
               equivalent number of bytes; if lenp is non-zero, it does the
               same to lenp, but this time starting from the offset, rather
               than from the start of the string. Handles magic and type
               coercion.

                       void    sv_pos_u2b(SV* sv, I32* offsetp, I32* lenp)

       sv_pvbyten_force
               The backend for the "SvPVbytex_force" macro. Always use the
               macro instead.

                       char*   sv_pvbyten_force(SV* sv, STRLEN* lp)

       sv_pvn_force
               Get a sensible string out of the SV somehow.  A private
               implementation of the "SvPV_force" macro for compilers which
               can’t cope with complex macro expressions. Always use the macro
               instead.

                       char*   sv_pvn_force(SV* sv, STRLEN* lp)

       sv_pvn_force_flags
               Get a sensible string out of the SV somehow.  If "flags" has
               "SV_GMAGIC" bit set, will "mg_get" on "sv" if appropriate, else
               not. "sv_pvn_force" and "sv_pvn_force_nomg" are implemented in
               terms of this function.  You normally want to use the various
               wrapper macros instead: see "SvPV_force" and "SvPV_force_nomg"

                       char*   sv_pvn_force_flags(SV* sv, STRLEN* lp, I32 flags)

       sv_pvutf8n_force
               The backend for the "SvPVutf8x_force" macro. Always use the
               macro instead.

                       char*   sv_pvutf8n_force(SV* sv, STRLEN* lp)

       sv_reftype
               Returns a string describing what the SV is a reference to.

                       const char*     sv_reftype(const SV* sv, int ob)

       sv_replace
               Make the first argument a copy of the second, then delete the
               original.  The target SV physically takes over ownership of the
               body of the source SV and inherits its flags; however, the
               target keeps any magic it owns, and any magic in the source is
               discarded.  Note that this is a rather specialist SV copying
               operation; most of the time you’ll want to use "sv_setsv" or
               one of its many macro front-ends.

                       void    sv_replace(SV* sv, SV* nsv)

       sv_reset
               Underlying implementation for the "reset" Perl function.  Note
               that the perl-level function is vaguely deprecated.

                       void    sv_reset(const char* s, HV* stash)

       sv_rvweaken
               Weaken a reference: set the "SvWEAKREF" flag on this RV; give
               the referred-to SV "PERL_MAGIC_backref" magic if it hasn’t
               already; and push a back-reference to this RV onto the array of
               backreferences associated with that magic. If the RV is
               magical, set magic will be called after the RV is cleared.

                       SV*     sv_rvweaken(SV *sv)

       sv_setiv
               Copies an integer into the given SV, upgrading first if
               necessary.  Does not handle ’set’ magic.  See also
               "sv_setiv_mg".

                       void    sv_setiv(SV* sv, IV num)

       sv_setiv_mg
               Like "sv_setiv", but also handles ’set’ magic.

                       void    sv_setiv_mg(SV *sv, IV i)

       sv_setnv
               Copies a double into the given SV, upgrading first if
               necessary.  Does not handle ’set’ magic.  See also
               "sv_setnv_mg".

                       void    sv_setnv(SV* sv, NV num)

       sv_setnv_mg
               Like "sv_setnv", but also handles ’set’ magic.

                       void    sv_setnv_mg(SV *sv, NV num)

       sv_setpv
               Copies a string into an SV.  The string must be null-
               terminated.  Does not handle ’set’ magic.  See "sv_setpv_mg".

                       void    sv_setpv(SV* sv, const char* ptr)

       sv_setpvf
               Works like "sv_catpvf" but copies the text into the SV instead
               of appending it.  Does not handle ’set’ magic.  See
               "sv_setpvf_mg".

                       void    sv_setpvf(SV* sv, const char* pat, ...)

       sv_setpvf_mg
               Like "sv_setpvf", but also handles ’set’ magic.

                       void    sv_setpvf_mg(SV *sv, const char* pat, ...)

       sv_setpviv
               Copies an integer into the given SV, also updating its string
               value.  Does not handle ’set’ magic.  See "sv_setpviv_mg".

                       void    sv_setpviv(SV* sv, IV num)

       sv_setpviv_mg
               Like "sv_setpviv", but also handles ’set’ magic.

                       void    sv_setpviv_mg(SV *sv, IV iv)

       sv_setpvn
               Copies a string into an SV.  The "len" parameter indicates the
               number of bytes to be copied.  If the "ptr" argument is NULL
               the SV will become undefined.  Does not handle ’set’ magic.
               See "sv_setpvn_mg".

                       void    sv_setpvn(SV* sv, const char* ptr, STRLEN len)

       sv_setpvn_mg
               Like "sv_setpvn", but also handles ’set’ magic.

                       void    sv_setpvn_mg(SV *sv, const char *ptr, STRLEN len)

       sv_setpvs
               Like "sv_setpvn", but takes a literal string instead of a
               string/length pair.

                       void    sv_setpvs(SV* sv, const char* s)

       sv_setpv_mg
               Like "sv_setpv", but also handles ’set’ magic.

                       void    sv_setpv_mg(SV *sv, const char *ptr)

       sv_setref_iv
               Copies an integer into a new SV, optionally blessing the SV.
               The "rv" argument will be upgraded to an RV.  That RV will be
               modified to point to the new SV.  The "classname" argument
               indicates the package for the blessing.  Set "classname" to
               "NULL" to avoid the blessing.  The new SV will have a reference
               count of 1, and the RV will be returned.

                       SV*     sv_setref_iv(SV* rv, const char* classname, IV iv)

       sv_setref_nv
               Copies a double into a new SV, optionally blessing the SV.  The
               "rv" argument will be upgraded to an RV.  That RV will be
               modified to point to the new SV.  The "classname" argument
               indicates the package for the blessing.  Set "classname" to
               "NULL" to avoid the blessing.  The new SV will have a reference
               count of 1, and the RV will be returned.

                       SV*     sv_setref_nv(SV* rv, const char* classname, NV nv)

       sv_setref_pv
               Copies a pointer into a new SV, optionally blessing the SV.
               The "rv" argument will be upgraded to an RV.  That RV will be
               modified to point to the new SV.  If the "pv" argument is NULL
               then "PL_sv_undef" will be placed into the SV.  The "classname"
               argument indicates the package for the blessing.  Set
               "classname" to "NULL" to avoid the blessing.  The new SV will
               have a reference count of 1, and the RV will be returned.

               Do not use with other Perl types such as HV, AV, SV, CV,
               because those objects will become corrupted by the pointer copy
               process.

               Note that "sv_setref_pvn" copies the string while this copies
               the pointer.

                       SV*     sv_setref_pv(SV* rv, const char* classname, void* pv)

       sv_setref_pvn
               Copies a string into a new SV, optionally blessing the SV.  The
               length of the string must be specified with "n".  The "rv"
               argument will be upgraded to an RV.  That RV will be modified
               to point to the new SV.  The "classname" argument indicates the
               package for the blessing.  Set "classname" to "NULL" to avoid
               the blessing.  The new SV will have a reference count of 1, and
               the RV will be returned.

               Note that "sv_setref_pv" copies the pointer while this copies
               the string.

                       SV*     sv_setref_pvn(SV* rv, const char* classname, const char* pv, STRLEN n)

       sv_setref_uv
               Copies an unsigned integer into a new SV, optionally blessing
               the SV.  The "rv" argument will be upgraded to an RV.  That RV
               will be modified to point to the new SV.  The "classname"
               argument indicates the package for the blessing.  Set
               "classname" to "NULL" to avoid the blessing.  The new SV will
               have a reference count of 1, and the RV will be returned.

                       SV*     sv_setref_uv(SV* rv, const char* classname, UV uv)

       sv_setsv
               Copies the contents of the source SV "ssv" into the destination
               SV "dsv".  The source SV may be destroyed if it is mortal, so
               don’t use this function if the source SV needs to be reused.
               Does not handle ’set’ magic.  Loosely speaking, it performs a
               copy-by-value, obliterating any previous content of the
               destination.

               You probably want to use one of the assortment of wrappers,
               such as "SvSetSV", "SvSetSV_nosteal", "SvSetMagicSV" and
               "SvSetMagicSV_nosteal".

                       void    sv_setsv(SV *dstr, SV *sstr)

       sv_setsv_flags
               Copies the contents of the source SV "ssv" into the destination
               SV "dsv".  The source SV may be destroyed if it is mortal, so
               don’t use this function if the source SV needs to be reused.
               Does not handle ’set’ magic.  Loosely speaking, it performs a
               copy-by-value, obliterating any previous content of the
               destination.  If the "flags" parameter has the "SV_GMAGIC" bit
               set, will "mg_get" on "ssv" if appropriate, else not. If the
               "flags" parameter has the "NOSTEAL" bit set then the buffers of
               temps will not be stolen. <sv_setsv> and "sv_setsv_nomg" are
               implemented in terms of this function.

               You probably want to use one of the assortment of wrappers,
               such as "SvSetSV", "SvSetSV_nosteal", "SvSetMagicSV" and
               "SvSetMagicSV_nosteal".

               This is the primary function for copying scalars, and most
               other copy-ish functions and macros use this underneath.

                       void    sv_setsv_flags(SV *dstr, SV *sstr, I32 flags)

       sv_setsv_mg
               Like "sv_setsv", but also handles ’set’ magic.

                       void    sv_setsv_mg(SV *dstr, SV *sstr)

       sv_setuv
               Copies an unsigned integer into the given SV, upgrading first
               if necessary.  Does not handle ’set’ magic.  See also
               "sv_setuv_mg".

                       void    sv_setuv(SV* sv, UV num)

       sv_setuv_mg
               Like "sv_setuv", but also handles ’set’ magic.

                       void    sv_setuv_mg(SV *sv, UV u)

       sv_tainted
               Test an SV for taintedness. Use "SvTAINTED" instead.
                    bool sv_tainted(SV* sv)

       sv_true Returns true if the SV has a true value by Perl’s rules.  Use
               the "SvTRUE" macro instead, which may call "sv_true()" or may
               instead use an in-line version.

                       I32     sv_true(SV *sv)

       sv_unmagic
               Removes all magic of type "type" from an SV.

                       int     sv_unmagic(SV* sv, int type)

       sv_unref_flags
               Unsets the RV status of the SV, and decrements the reference
               count of whatever was being referenced by the RV.  This can
               almost be thought of as a reversal of "newSVrv".  The "cflags"
               argument can contain "SV_IMMEDIATE_UNREF" to force the
               reference count to be decremented (otherwise the decrementing
               is conditional on the reference count being different from one
               or the reference being a readonly SV).  See "SvROK_off".

                       void    sv_unref_flags(SV *ref, U32 flags)

       sv_untaint
               Untaint an SV. Use "SvTAINTED_off" instead.
                    void sv_untaint(SV* sv)

       sv_upgrade
               Upgrade an SV to a more complex form.  Generally adds a new
               body type to the SV, then copies across as much information as
               possible from the old body.  You generally want to use the
               "SvUPGRADE" macro wrapper. See also "svtype".

                       void    sv_upgrade(SV* sv, svtype new_type)

       sv_usepvn_flags
               Tells an SV to use "ptr" to find its string value.  Normally
               the string is stored inside the SV but sv_usepvn allows the SV
               to use an outside string.  The "ptr" should point to memory
               that was allocated by "malloc".  The string length, "len", must
               be supplied.  By default this function will realloc (i.e. move)
               the memory pointed to by "ptr", so that pointer should not be
               freed or used by the programmer after giving it to sv_usepvn,
               and neither should any pointers from "behind" that pointer
               (e.g. ptr + 1) be used.

               If "flags" & SV_SMAGIC is true, will call SvSETMAGIC. If
               "flags" & SV_HAS_TRAILING_NUL is true, then "ptr[len]" must be
               NUL, and the realloc will be skipped. (i.e. the buffer is
               actually at least 1 byte longer than "len", and already meets
               the requirements for storing in "SvPVX")

                       void    sv_usepvn_flags(SV* sv, char* ptr, STRLEN len, U32 flags)

       sv_utf8_decode
               If the PV of the SV is an octet sequence in UTF-8 and contains
               a multiple-byte character, the "SvUTF8" flag is turned on so
               that it looks like a character. If the PV contains only single-
               byte characters, the "SvUTF8" flag stays being off.  Scans PV
               for validity and returns false if the PV is invalid UTF-8.

               NOTE: this function is experimental and may change or be
               removed without notice.

                       bool    sv_utf8_decode(SV *sv)

       sv_utf8_downgrade
               Attempts to convert the PV of an SV from characters to bytes.
               If the PV contains a character that cannot fit in a byte, this
               conversion will fail; in this case, either returns false or, if
               "fail_ok" is not true, croaks.

               This is not as a general purpose Unicode to byte encoding
               interface: use the Encode extension for that.

               NOTE: this function is experimental and may change or be
               removed without notice.

                       bool    sv_utf8_downgrade(SV *sv, bool fail_ok)

       sv_utf8_encode
               Converts the PV of an SV to UTF-8, but then turns the "SvUTF8"
               flag off so that it looks like octets again.

                       void    sv_utf8_encode(SV *sv)

       sv_utf8_upgrade
               Converts the PV of an SV to its UTF-8-encoded form.  Forces the
               SV to string form if it is not already.  Will "mg_get" on "sv"
               if appropriate.  Always sets the SvUTF8 flag to avoid future
               validity checks even if the whole string is the same in UTF-8
               as not.  Returns the number of bytes in the converted string

               This is not as a general purpose byte encoding to Unicode
               interface: use the Encode extension for that.

                       STRLEN  sv_utf8_upgrade(SV *sv)

       sv_utf8_upgrade_flags
               Converts the PV of an SV to its UTF-8-encoded form.  Forces the
               SV to string form if it is not already.  Always sets the SvUTF8
               flag to avoid future validity checks even if all the bytes are
               invariant in UTF-8. If "flags" has "SV_GMAGIC" bit set, will
               "mg_get" on "sv" if appropriate, else not.  Returns the number
               of bytes in the converted string "sv_utf8_upgrade" and
               "sv_utf8_upgrade_nomg" are implemented in terms of this
               function.

               This is not as a general purpose byte encoding to Unicode
               interface: use the Encode extension for that.

                       STRLEN  sv_utf8_upgrade_flags(SV *sv, I32 flags)

       sv_utf8_upgrade_nomg
               Like sv_utf8_upgrade, but doesn’t do magic on "sv"

                       STRLEN  sv_utf8_upgrade_nomg(SV *sv)

       sv_vcatpvf
               Processes its arguments like "vsprintf" and appends the
               formatted output to an SV.  Does not handle ’set’ magic.  See
               "sv_vcatpvf_mg".

               Usually used via its frontend "sv_catpvf".

                       void    sv_vcatpvf(SV* sv, const char* pat, va_list* args)

       sv_vcatpvfn
               Processes its arguments like "vsprintf" and appends the
               formatted output to an SV.  Uses an array of SVs if the C style
               variable argument list is missing (NULL).  When running with
               taint checks enabled, indicates via "maybe_tainted" if results
               are untrustworthy (often due to the use of locales).

               Usually used via one of its frontends "sv_vcatpvf" and
               "sv_vcatpvf_mg".

                       void    sv_vcatpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

       sv_vcatpvf_mg
               Like "sv_vcatpvf", but also handles ’set’ magic.

               Usually used via its frontend "sv_catpvf_mg".

                       void    sv_vcatpvf_mg(SV* sv, const char* pat, va_list* args)

       sv_vsetpvf
               Works like "sv_vcatpvf" but copies the text into the SV instead
               of appending it.  Does not handle ’set’ magic.  See
               "sv_vsetpvf_mg".

               Usually used via its frontend "sv_setpvf".

                       void    sv_vsetpvf(SV* sv, const char* pat, va_list* args)

       sv_vsetpvfn
               Works like "sv_vcatpvfn" but copies the text into the SV
               instead of appending it.

               Usually used via one of its frontends "sv_vsetpvf" and
               "sv_vsetpvf_mg".

                       void    sv_vsetpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

       sv_vsetpvf_mg
               Like "sv_vsetpvf", but also handles ’set’ magic.

               Usually used via its frontend "sv_setpvf_mg".

                       void    sv_vsetpvf_mg(SV* sv, const char* pat, va_list* args)

Unicode Support

       bytes_from_utf8
               Converts a string "s" of length "len" from UTF-8 into native
               byte encoding.  Unlike "utf8_to_bytes" but like
               "bytes_to_utf8", returns a pointer to the newly-created string,
               and updates "len" to contain the new length.  Returns the
               original string if no conversion occurs, "len" is unchanged. Do
               nothing if "is_utf8" points to 0. Sets "is_utf8" to 0 if "s" is
               converted or consisted entirely of characters that are
               invariant in utf8 (i.e., US-ASCII on non-EBCDIC machines).

               NOTE: this function is experimental and may change or be
               removed without notice.

                       U8*     bytes_from_utf8(const U8 *s, STRLEN *len, bool *is_utf8)

       bytes_to_utf8
               Converts a string "s" of length "len" from the native encoding
               into UTF-8.  Returns a pointer to the newly-created string, and
               sets "len" to reflect the new length.

               A NUL character will be written after the end of the string.

               If you want to convert to UTF-8 from encodings other than the
               native (Latin1 or EBCDIC), see sv_recode_to_utf8().

               NOTE: this function is experimental and may change or be
               removed without notice.

                       U8*     bytes_to_utf8(const U8 *s, STRLEN *len)

       ibcmp_utf8
               Return true if the strings s1 and s2 differ case-insensitively,
               false if not (if they are equal case-insensitively).  If u1 is
               true, the string s1 is assumed to be in UTF-8-encoded Unicode.
               If u2 is true, the string s2 is assumed to be in UTF-8-encoded
               Unicode.  If u1 or u2 are false, the respective string is
               assumed to be in native 8-bit encoding.

               If the pe1 and pe2 are non-NULL, the scanning pointers will be
               copied in there (they will point at the beginning of the next
               character).  If the pointers behind pe1 or pe2 are non-NULL,
               they are the end pointers beyond which scanning will not
               continue under any circumstances.  If the byte lengths l1 and
               l2 are non-zero, s1+l1 and s2+l2 will be used as goal end
               pointers that will also stop the scan, and which qualify
               towards defining a successful match: all the scans that define
               an explicit length must reach their goal pointers for a match
               to succeed).

               For case-insensitiveness, the "casefolding" of Unicode is used
               instead of upper/lowercasing both the characters, see
               http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).

                       I32     ibcmp_utf8(const char *s1, char **pe1, UV l1, bool u1, const char *s2, char **pe2, UV l2, bool u2)

       is_utf8_char
               Tests if some arbitrary number of bytes begins in a valid UTF-8
               character.  Note that an INVARIANT (i.e. ASCII on non-EBCDIC
               machines) character is a valid UTF-8 character.  The actual
               number of bytes in the UTF-8 character will be returned if it
               is valid, otherwise 0.

                       STRLEN  is_utf8_char(const U8 *s)

       is_utf8_string
               Returns true if first "len" bytes of the given string form a
               valid UTF-8 string, false otherwise.  Note that ’a valid UTF-8
               string’ does not mean ’a string that contains code points above
               0x7F encoded in UTF-8’ because a valid ASCII string is a valid
               UTF-8 string.

               See also is_utf8_string_loclen() and is_utf8_string_loc().

                       bool    is_utf8_string(const U8 *s, STRLEN len)

       is_utf8_string_loc
               Like is_utf8_string() but stores the location of the failure
               (in the case of "utf8ness failure") or the location s+len (in
               the case of "utf8ness success") in the "ep".

               See also is_utf8_string_loclen() and is_utf8_string().

                       bool    is_utf8_string_loc(const U8 *s, STRLEN len, const U8 **p)

       is_utf8_string_loclen
               Like is_utf8_string() but stores the location of the failure
               (in the case of "utf8ness failure") or the location s+len (in
               the case of "utf8ness success") in the "ep", and the number of
               UTF-8 encoded characters in the "el".

               See also is_utf8_string_loc() and is_utf8_string().

                       bool    is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)

       pv_uni_display
               Build to the scalar dsv a displayable version of the string
               spv, length len, the displayable version being at most pvlim
               bytes long (if longer, the rest is truncated and "..." will be
               appended).

               The flags argument can have UNI_DISPLAY_ISPRINT set to display
               isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH
               to display the \\[nrfta\\] as the backslashed versions (like
               ’\n’) (UNI_DISPLAY_BACKSLASH is preferred over
               UNI_DISPLAY_ISPRINT for \\).  UNI_DISPLAY_QQ (and its alias
               UNI_DISPLAY_REGEX) have both UNI_DISPLAY_BACKSLASH and
               UNI_DISPLAY_ISPRINT turned on.

               The pointer to the PV of the dsv is returned.

                       char*   pv_uni_display(SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim, UV flags)

       sv_cat_decode
               The encoding is assumed to be an Encode object, the PV of the
               ssv is assumed to be octets in that encoding and decoding the
               input starts from the position which (PV + *offset) pointed to.
               The dsv will be concatenated the decoded UTF-8 string from ssv.
               Decoding will terminate when the string tstr appears in
               decoding output or the input ends on the PV of the ssv. The
               value which the offset points will be modified to the last
               input position on the ssv.

               Returns TRUE if the terminator was found, else returns FALSE.

                       bool    sv_cat_decode(SV* dsv, SV *encoding, SV *ssv, int *offset, char* tstr, int tlen)

       sv_recode_to_utf8
               The encoding is assumed to be an Encode object, on entry the PV
               of the sv is assumed to be octets in that encoding, and the sv
               will be converted into Unicode (and UTF-8).

               If the sv already is UTF-8 (or if it is not POK), or if the
               encoding is not a reference, nothing is done to the sv.  If the
               encoding is not an "Encode::XS" Encoding object, bad things
               will happen.  (See lib/encoding.pm and Encode).

               The PV of the sv is returned.

                       char*   sv_recode_to_utf8(SV* sv, SV *encoding)

       sv_uni_display
               Build to the scalar dsv a displayable version of the scalar sv,
               the displayable version being at most pvlim bytes long (if
               longer, the rest is truncated and "..." will be appended).

               The flags argument is as in pv_uni_display().

               The pointer to the PV of the dsv is returned.

                       char*   sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)

       to_utf8_case
               The "p" contains the pointer to the UTF-8 string encoding the
               character that is being converted.

               The "ustrp" is a pointer to the character buffer to put the
               conversion result to.  The "lenp" is a pointer to the length of
               the result.

               The "swashp" is a pointer to the swash to use.

               Both the special and normal mappings are stored
               lib/unicore/To/Foo.pl, and loaded by SWASHNEW, using
               lib/utf8_heavy.pl.  The special (usually, but not always, a
               multicharacter mapping), is tried first.

               The "special" is a string like "utf8::ToSpecLower", which means
               the hash %utf8::ToSpecLower.  The access to the hash is through
               Perl_to_utf8_case().

               The "normal" is a string like "ToLower" which means the swash
               %utf8::ToLower.

                       UV      to_utf8_case(const U8 *p, U8* ustrp, STRLEN *lenp, SV **swashp, const char *normal, const char *special)

       to_utf8_fold
               Convert the UTF-8 encoded character at p to its foldcase
               version and store that in UTF-8 in ustrp and its length in
               bytes in lenp.  Note that the ustrp needs to be at least
               UTF8_MAXBYTES_CASE+1 bytes since the foldcase version may be
               longer than the original character (up to three characters).

               The first character of the foldcased version is returned (but
               note, as explained above, that there may be more.)

                       UV      to_utf8_fold(const U8 *p, U8* ustrp, STRLEN *lenp)

       to_utf8_lower
               Convert the UTF-8 encoded character at p to its lowercase
               version and store that in UTF-8 in ustrp and its length in
               bytes in lenp.  Note that the ustrp needs to be at least
               UTF8_MAXBYTES_CASE+1 bytes since the lowercase version may be
               longer than the original character.

               The first character of the lowercased version is returned (but
               note, as explained above, that there may be more.)

                       UV      to_utf8_lower(const U8 *p, U8* ustrp, STRLEN *lenp)

       to_utf8_title
               Convert the UTF-8 encoded character at p to its titlecase
               version and store that in UTF-8 in ustrp and its length in
               bytes in lenp.  Note that the ustrp needs to be at least
               UTF8_MAXBYTES_CASE+1 bytes since the titlecase version may be
               longer than the original character.

               The first character of the titlecased version is returned (but
               note, as explained above, that there may be more.)

                       UV      to_utf8_title(const U8 *p, U8* ustrp, STRLEN *lenp)

       to_utf8_upper
               Convert the UTF-8 encoded character at p to its uppercase
               version and store that in UTF-8 in ustrp and its length in
               bytes in lenp.  Note that the ustrp needs to be at least
               UTF8_MAXBYTES_CASE+1 bytes since the uppercase version may be
               longer than the original character.

               The first character of the uppercased version is returned (but
               note, as explained above, that there may be more.)

                       UV      to_utf8_upper(const U8 *p, U8* ustrp, STRLEN *lenp)

       utf8n_to_uvchr
               flags

               Returns the native character value of the first character in
               the string "s" which is assumed to be in UTF-8 encoding;
               "retlen" will be set to the length, in bytes, of that
               character.

               Allows length and flags to be passed to low level routine.

                       UV      utf8n_to_uvchr(const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)

       utf8n_to_uvuni
               Bottom level UTF-8 decode routine.  Returns the Unicode code
               point value of the first character in the string "s" which is
               assumed to be in UTF-8 encoding and no longer than "curlen";
               "retlen" will be set to the length, in bytes, of that
               character.

               If "s" does not point to a well-formed UTF-8 character, the
               behaviour is dependent on the value of "flags": if it contains
               UTF8_CHECK_ONLY, it is assumed that the caller will raise a
               warning, and this function will silently just set "retlen" to
               "-1" and return zero.  If the "flags" does not contain
               UTF8_CHECK_ONLY, warnings about malformations will be given,
               "retlen" will be set to the expected length of the UTF-8
               character in bytes, and zero will be returned.

               The "flags" can also contain various flags to allow deviations
               from the strict UTF-8 encoding (see utf8.h).

               Most code should use utf8_to_uvchr() rather than call this
               directly.

                       UV      utf8n_to_uvuni(const U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)

       utf8_distance
               Returns the number of UTF-8 characters between the UTF-8
               pointers "a" and "b".

               WARNING: use only if you *know* that the pointers point inside
               the same UTF-8 buffer.

                       IV      utf8_distance(const U8 *a, const U8 *b)

       utf8_hop
               Return the UTF-8 pointer "s" displaced by "off" characters,
               either forward or backward.

               WARNING: do not use the following unless you *know* "off" is
               within the UTF-8 data pointed to by "s" *and* that on entry "s"
               is aligned on the first byte of character or just after the
               last byte of a character.

                       U8*     utf8_hop(const U8 *s, I32 off)

       utf8_length
               Return the length of the UTF-8 char encoded string "s" in
               characters.  Stops at "e" (inclusive).  If "e < s" or if the
               scan would end up past "e", croaks.

                       STRLEN  utf8_length(const U8* s, const U8 *e)

       utf8_to_bytes
               Converts a string "s" of length "len" from UTF-8 into native
               byte encoding.  Unlike "bytes_to_utf8", this over-writes the
               original string, and updates len to contain the new length.
               Returns zero on failure, setting "len" to -1.

               If you need a copy of the string, see "bytes_from_utf8".

               NOTE: this function is experimental and may change or be
               removed without notice.

                       U8*     utf8_to_bytes(U8 *s, STRLEN *len)

       utf8_to_uvchr
               Returns the native character value of the first character in
               the string "s" which is assumed to be in UTF-8 encoding;
               "retlen" will be set to the length, in bytes, of that
               character.

               If "s" does not point to a well-formed UTF-8 character, zero is
               returned and retlen is set, if possible, to -1.

                       UV      utf8_to_uvchr(const U8 *s, STRLEN *retlen)

       utf8_to_uvuni
               Returns the Unicode code point of the first character in the
               string "s" which is assumed to be in UTF-8 encoding; "retlen"
               will be set to the length, in bytes, of that character.

               This function should only be used when the returned UV is
               considered an index into the Unicode semantic tables (e.g.
               swashes).

               If "s" does not point to a well-formed UTF-8 character, zero is
               returned and retlen is set, if possible, to -1.

                       UV      utf8_to_uvuni(const U8 *s, STRLEN *retlen)

       uvchr_to_utf8
               Adds the UTF-8 representation of the Native codepoint "uv" to
               the end of the string "d"; "d" should be have at least
               "UTF8_MAXBYTES+1" free bytes available. The return value is the
               pointer to the byte after the end of the new character. In
               other words,

                   d = uvchr_to_utf8(d, uv);

               is the recommended wide native character-aware way of saying

                   *(d++) = uv;

                       U8*     uvchr_to_utf8(U8 *d, UV uv)

       uvuni_to_utf8_flags
               Adds the UTF-8 representation of the Unicode codepoint "uv" to
               the end of the string "d"; "d" should be have at least
               "UTF8_MAXBYTES+1" free bytes available. The return value is the
               pointer to the byte after the end of the new character. In
               other words,

                   d = uvuni_to_utf8_flags(d, uv, flags);

               or, in most cases,

                   d = uvuni_to_utf8(d, uv);

               (which is equivalent to)

                   d = uvuni_to_utf8_flags(d, uv, 0);

               is the recommended Unicode-aware way of saying

                   *(d++) = uv;

                       U8*     uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

Variables created by "xsubpp" and "xsubpp" internal functions

       ax      Variable which is setup by "xsubpp" to indicate the stack base
               offset, used by the "ST", "XSprePUSH" and "XSRETURN" macros.
               The "dMARK" macro must be called prior to setup the "MARK"
               variable.

                       I32     ax

       CLASS   Variable which is setup by "xsubpp" to indicate the class name
               for a C++ XS constructor.  This is always a "char*".  See
               "THIS".

                       char*   CLASS

       dAX     Sets up the "ax" variable.  This is usually handled
               automatically by "xsubpp" by calling "dXSARGS".

                               dAX;

       dAXMARK Sets up the "ax" variable and stack marker variable "mark".
               This is usually handled automatically by "xsubpp" by calling
               "dXSARGS".

                               dAXMARK;

       dITEMS  Sets up the "items" variable.  This is usually handled
               automatically by "xsubpp" by calling "dXSARGS".

                               dITEMS;

       dUNDERBAR
               Sets up the "padoff_du" variable for an XSUB that wishes to use
               "UNDERBAR".

                               dUNDERBAR;

       dXSARGS Sets up stack and mark pointers for an XSUB, calling dSP and
               dMARK.  Sets up the "ax" and "items" variables by calling "dAX"
               and "dITEMS".  This is usually handled automatically by
               "xsubpp".

                               dXSARGS;

       dXSI32  Sets up the "ix" variable for an XSUB which has aliases.  This
               is usually handled automatically by "xsubpp".

                               dXSI32;

       items   Variable which is setup by "xsubpp" to indicate the number of
               items on the stack.  See "Variable-length Parameter Lists" in
               perlxs.

                       I32     items

       ix      Variable which is setup by "xsubpp" to indicate which of an
               XSUB’s aliases was used to invoke it.  See "The ALIAS: Keyword"
               in perlxs.

                       I32     ix

       newXSproto
               Used by "xsubpp" to hook up XSUBs as Perl subs.  Adds Perl
               prototypes to the subs.

       RETVAL  Variable which is setup by "xsubpp" to hold the return value
               for an XSUB. This is always the proper type for the XSUB. See
               "The RETVAL Variable" in perlxs.

                       (whatever)      RETVAL

       ST      Used to access elements on the XSUB’s stack.

                       SV*     ST(int ix)

       THIS    Variable which is setup by "xsubpp" to designate the object in
               a C++ XSUB.  This is always the proper type for the C++ object.
               See "CLASS" and "Using XS With C++" in perlxs.

                       (whatever)      THIS

       UNDERBAR
               The SV* corresponding to the $_ variable. Works even if there
               is a lexical $_ in scope.

       XS      Macro to declare an XSUB and its C parameter list.  This is
               handled by "xsubpp".

       XS_VERSION
               The version identifier for an XS module.  This is usually
               handled automatically by "ExtUtils::MakeMaker".  See
               "XS_VERSION_BOOTCHECK".

       XS_VERSION_BOOTCHECK
               Macro to verify that a PM module’s $VERSION variable matches
               the XS module’s "XS_VERSION" variable.  This is usually handled
               automatically by "xsubpp".  See "The VERSIONCHECK: Keyword" in
               perlxs.

                               XS_VERSION_BOOTCHECK;

Warning and Dieing

       croak   This is the XSUB-writer’s interface to Perl’s "die" function.
               Normally call this function the same way you call the C
               "printf" function.  Calling "croak" returns control directly to
               Perl, sidestepping the normal C order of execution. See "warn".

               If you want to throw an exception object, assign the object to
               $@ and then pass "NULL" to croak():

                  errsv = get_sv("@", GV_ADD);
                  sv_setsv(errsv, exception_object);
                  croak(NULL);

                       void    croak(const char* pat, ...)

       warn    This is the XSUB-writer’s interface to Perl’s "warn" function.
               Call this function the same way you call the C "printf"
               function.  See "croak".

                       void    warn(const char* pat, ...)

AUTHORS

       Until May 1997, this document was maintained by Jeff Okamoto
       <okamoto@corp.hp.com>.  It is now maintained as part of Perl itself.

       With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
       Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
       Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer,
       Stephen McCamant, and Gurusamy Sarathy.

       API Listing originally by Dean Roehrich <roehrich@cray.com>.

       Updated to be autogenerated from comments in the source by Benjamin
       Stuhl.

SEE ALSO

       perlguts(1), perlxs(1), perlxstut(1), perlintern(1)