Man Linux: Main Page and Category List

NAME

       gdal_grid - gdal_grid creates regular grid from the scattered data

SYNOPSIS

       Usage: gdal_grid [--help-general] [--formats]
           [-ot {Byte/Int16/UInt16/UInt32/Int32/Float32/Float64/
                 CInt16/CInt32/CFloat32/CFloat64}]
           [-of format] [-co "NAME=VALUE"]
           [-zfield field_name]
           [-a_srs srs_def] [-spat xmin ymin xmax ymax]
           [-l layername]* [-where expression] [-sql select_statement]
           [-txe xmin xmax] [-tye ymin ymax] [-outsize xsize ysize]
           [-a algorithm[:parameter1=value1]*]    [-quiet]
           <src_datasource> <dst_filename>

DESCRIPTION

       This program creates regular grid (raster) from the scattered data read
       from the OGR datasource. Input data will be interpolated to fill grid
       nodes with values, you can choose from various interpolation methods.

       -ot type:
           For the output bands to be of the indicated data type.

       -of format:
           Select the output format. The default is GeoTIFF (GTiff). Use the
           short format name.

       -txe xmin xmax:
           Set georeferenced X extents of output file to be created.

       -tye ymin ymax:
           Set georeferenced Y extents of output file to be created.

       -outsize xsize ysize:
           Set the size of the output file in pixels and lines.

       -a_srs srs_def:
           Override the projection for the output file. The srs_def may be any
           of the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file
           containing the WKT.

       -zfield field_name:
           Identifies an attribute field on the features to be used to get a Z
           value from. This value overrides Z value read from feature geometry
           record (naturally, if you have a Z value in geometry, otherwise you
           have no choice and should specify a field name containing Z value).

       -a [algorithm[:parameter1=value1][:parameter2=value2]...]:
           Set the interpolation algorithm or data metric name and
           (optionally) its parameters. See INTERPOLATION ALGORITHMS and DATA
           METRICS sections for further discussion of available options.

       -spat xmin ymin xmax ymax:
           Adds a spatial filter to select only features intersecting the
           bounding box described by (xmin, ymin) - (xmax, ymax).

       -l layername:
           Indicates the layer(s) from the datasource that will be used for
           input features. May be specified multiple times, but at least one
           layer name or a -sql option must be specified.

       -where expression:
           An optional SQL WHERE style query expression to be applied to
           select features to process from the input layer(s).

       -sql select_statement:
           An SQL statement to be evaluated against the datasource to produce
           a virtual layer of features to be processed.

       -co NAME=VALUE:
           Passes a creation option to the output format driver. Multiple -co
           options may be listed. See format specific documentation for legal
           creation options for each format.

       -quiet:
           Suppress progress monitor and other non-error output.

       src_datasource:
           Any OGR supported readable datasource.

       dst_filename:
           The GDAL supported output file.

INTERPOLATION ALGORITHMS

       There are number of interpolation algorithms to choose from.

   invdist
       Inverse distance to a power. This is default algorithm. It has
       following parameters:

       power:
           Weighting power (default 2.0).

       smoothing:
           Smoothing parameter (default 0.0).

       radius1:
           The first radius (X axis if rotation angle is 0) of search ellipse.
           Set this parameter to zero to use whole point array. Default is
           0.0.

       radius2:
           The second radius (Y axis if rotation angle is 0) of search
           ellipse. Set this parameter to zero to use whole point array.
           Default is 0.0.

       angle:
           Angle of search ellipse rotation in degrees (counter clockwise,
           default 0.0).

       max_points:
           Maximum number of data points to use. Do not search for more points
           than this number. This is only used if search ellipse is set (both
           radiuses are non-zero). Zero means that all found points should be
           used. Default is 0.

       min_points:
           Minimum number of data points to use. If less amount of points
           found the grid node considered empty and will be filled with NODATA
           marker. This is only used if search ellipse is set (both radiuses
           are non-zero). Default is 0.

       nodata:
           NODATA marker to fill empty points (default 0.0).

   average
       Moving average algorithm. It has following parameters:

       radius1:
           The first radius (X axis if rotation angle is 0) of search ellipse.
           Set this parameter to zero to use whole point array. Default is
           0.0.

       radius2:
           The second radius (Y axis if rotation angle is 0) of search
           ellipse. Set this parameter to zero to use whole point array.
           Default is 0.0.

       angle:
           Angle of search ellipse rotation in degrees (counter clockwise,
           default 0.0).

       min_points:
           Minimum number of data points to use. If less amount of points
           found the grid node considered empty and will be filled with NODATA
           marker. Default is 0.

       nodata:
           NODATA marker to fill empty points (default 0.0).

       Note, that it is essential to set search ellipse for moving average
       method. It is a window that will be averaged when computing grid nodes
       values.

   nearest
       Nearest neighbor algorithm. It has following parameters:

       radius1:
           The first radius (X axis if rotation angle is 0) of search ellipse.
           Set this parameter to zero to use whole point array. Default is
           0.0.

       radius2:
           The second radius (Y axis if rotation angle is 0) of search
           ellipse. Set this parameter to zero to use whole point array.
           Default is 0.0.

       angle:
           Angle of search ellipse rotation in degrees (counter clockwise,
           default 0.0).

       nodata:
           NODATA marker to fill empty points (default 0.0).

DATA METRICS

       Besides the interpolation functionality gdal_grid can be used to
       compute some data metrics using the specified window and output grid
       geometry. These metrics are:

       minimum:
           Minimum value found in grid node search ellipse.

       maximum:
           Maximum value found in grid node search ellipse.

       range:
           A difference between the minimum and maximum values found in grid
           node search ellipse.

       All the metrics have the same set of options:

       radius1:
           The first radius (X axis if rotation angle is 0) of search ellipse.
           Set this parameter to zero to use whole point array. Default is
           0.0.

       radius2:
           The second radius (Y axis if rotation angle is 0) of search
           ellipse. Set this parameter to zero to use whole point array.
           Default is 0.0.

       angle:
           Angle of search ellipse rotation in degrees (counter clockwise,
           default 0.0).

       min_points:
           Minimum number of data points to use. If less amount of points
           found the grid node considered empty and will be filled with NODATA
           marker. This is only used if search ellipse is set (both radiuses
           are non-zero). Default is 0.

       nodata:
           NODATA marker to fill empty points (default 0.0).

READING COMMA SEPARATED VALUES

       Often you have a text file with a list of comma separated XYZ values to
       work with (so called CSV file). You can easily use that kind of data
       source in gdal_grid. All you need is create a virtual dataset header
       (VRT) for you CSV file and use it as input datasource for gdal_grid.
       You can find details on VRT format at Virtual Format description page.

       Here is a small example. Let we have a CSV file called dem.csv
       containing

       Easting,Northing,Elevation
       86943.4,891957,139.13
       87124.3,892075,135.01
       86962.4,892321,182.04
       87077.6,891995,135.01

       For above data we will create dem.vrt header with the following
       content:

       <OGRVRTDataSource>
           <OGRVRTLayer name="dem">
               <SrcDataSource>dem.csv</SrcDataSource>
            <GeometryType>wkbPoint</GeometryType>
            <GeometryField encoding="PointFromColumns" x="Easting" y="Northing" z="Elevation"/>
           </OGRVRTLayer>
       </OGRVRTDataSource>

       This description specifies so called 2.5D geometry with three
       coordinates X, Y and Z. Z value will be used for interpolation. Now you
       can use dem.vrt with all OGR programs (start with ogrinfo to test that
       everything works fine). The datasource will contain single layer called
       dem filled with point features constructed from values in CSV file.
       Using this technique you can handle CSV files with more than three
       columns, switch columns, etc.

       If your CSV file does not contain column headers then it can be handled
       in the following way:

       <GeometryField encoding="PointFromColumns" x="field_1" y="field_2" z="field_3"/>

       Comma Separated Value description page contains details on CSV format
       supported by GDAL/OGR.

EXAMPLE

       The following would create raster TIFF file from VRT datasource
       described in READING COMMA SEPARATED VALUES section using the inverse
       distance to a power method. Values to interpolate will be read from Z
       value of geometry record.

       gdal_grid -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GTiff -ot Float64 -l dem dem.vrt dem.tiff

       The next command does the same thing as the previos one, but reads
       values to interpolate from the attribute field specified with -zfield
       option instead of geometry record. So in this case X and Y coordinates
       are being taken from geometry and Z is being taken from the Elevation
       field.

       gdal_grid -zfield "Elevation" -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GTiff -ot Float64 -l dem dem.vrt dem.tiff

AUTHORS

       Andrey Kiselev <dron@ak4719.spb.edu>