Man Linux: Main Page and Category List

NAME

       Atropos - part of ANTS registration suite

DESCRIPTION

   COMMAND:
              ./Atropos

       Atropos:
              A  priori  classification with registration initialized template
              assistance.

   OPTIONS:
       -i, --initialization:

       Option 1:
              Random[numberOfClasses]

       Option 2:
              Kmeans[numberOfClasses]

       Option 3:
              Otsu[numberOfClasses]

       Option 4:
              PriorProbabilityImages[numberOfClasses,fileSeriesFormat(index=1
              to numberOfClasses) or vectorImage,priorWeighting]

       Option 5:
              PriorLabelImage[numberOfClasses,labelImage,priorWeighting]

       -a, --intensity-image:

              [intensityImage,<adaptiveSmoothingWeight>] -- adaptive smoothing
              only applies to initialization with prior image(s)

       -x, --mask-image:

              maskImage

       -c, --convergence:

              [<numberOfIterations>,<convergenceThreshold>]

       -k, --likelihood-model:

              Option          1:          Gaussian          Option          2:
              ManifoldParzenWindows[<pointSetSigma=1.0>,<evaluationKNeighborhood=50>,<CovarianceKNeighborhood=0>,<kernelSigma=0>]
              Option 3: HistogramParzenWindows[<Sigma=1.0>,<numberOfBins=32>]

       -m, --mrf:

              [<smoothingFactor>,<radius>]

       -o, --output:

              [classifiedImage,<posteriorProbabilityImageFileNameFormat>]

       -u, --minimize-memory-usage:

              minimize-memory-usage=1/(0) <VALUES>: 0

       -b, --bspline:

              [<numberOfLevels>,<initialMeshResolution>,<splineOrder>] -- only
              applies  to  initialization  with  prior  image(s)  and non-zero
              adaptive smoothing parameter.

       -e, --use-euclidean-distance:

              use euclidean or geodesic distance for prior label distance maps
              =  1/(0)  --  only  applies to initialization with a prior label
              image.  <VALUES>: 0

       -w, --winsorize-outliers:

              Option                                                        1:
              BoxPlot[<lowerPercentile=0.25>,<upperPercentile=0.75>,<whiskerLength=1.5>]
              Option                                                        2:
              GrubbsRosner[<significanceLevel=0.05>,<winsorizingLevel=0.10>]

       -l, --labels:

              whichLabel[sigma,<boundaryProbability>]   --   only  applies  to
              initialization with a prior label image.

       -h, --help:

              Print menu.  <VALUES>: 1, 0