NAME
Unicode - the Universal Character Set
DESCRIPTION
The international standard ISO 10646 defines the Universal Character
Set (UCS). UCS contains all characters of all other character set
standards. It also guarantees round-trip compatibility, i.e.,
conversion tables can be built such that no information is lost when a
string is converted from any other encoding to UCS and back.
UCS contains the characters required to represent practically all known
languages. This includes not only the Latin, Greek, Cyrillic, Hebrew,
Arabic, Armenian, and Georgian scripts, but also Chinese, Japanese and
Korean Han ideographs as well as scripts such as Hiragana, Katakana,
Hangul, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Thai, Lao, Khmer, Bopomofo, Tibetan, Runic,
Ethiopic, Canadian Syllabics, Cherokee, Mongolian, Ogham, Myanmar,
Sinhala, Thaana, Yi, and others. For scripts not yet covered, research
on how to best encode them for computer usage is still going on and
they will be added eventually. This might eventually include not only
Hieroglyphs and various historic Indo-European languages, but even some
selected artistic scripts such as Tengwar, Cirth, and Klingon. UCS
also covers a large number of graphical, typographical, mathematical
and scientific symbols, including those provided by TeX, Postscript,
APL, MS-DOS, MS-Windows, Macintosh, OCR fonts, as well as many word
processing and publishing systems, and more are being added.
The UCS standard (ISO 10646) describes a 31-bit character set
architecture consisting of 128 24-bit groups, each divided into 256
16-bit planes made up of 256 8-bit rows with 256 column positions, one
for each character. Part 1 of the standard (ISO 10646-1) defines the
first 65534 code positions (0x0000 to 0xfffd), which form the Basic
Multilingual Plane (BMP), that is plane 0 in group 0. Part 2 of the
standard (ISO 10646-2) adds characters to group 0 outside the BMP in
several supplementary planes in the range 0x10000 to 0x10ffff. There
are no plans to add characters beyond 0x10ffff to the standard,
therefore of the entire code space, only a small fraction of group 0
will ever be actually used in the foreseeable future. The BMP contains
all characters found in the commonly used other character sets. The
supplemental planes added by ISO 10646-2 cover only more exotic
characters for special scientific, dictionary printing, publishing
industry, higher-level protocol and enthusiast needs.
The representation of each UCS character as a 2-byte word is referred
to as the UCS-2 form (only for BMP characters), whereas UCS-4 is the
representation of each character by a 4-byte word. In addition, there
exist two encoding forms UTF-8 for backwards compatibility with ASCII
processing software and UTF-16 for the backwards compatible handling of
non-BMP characters up to 0x10ffff by UCS-2 software.
The UCS characters 0x0000 to 0x007f are identical to those of the
classic US-ASCII character set and the characters in the range 0x0000
to 0x00ff are identical to those in ISO 8859-1 Latin-1.
Combining Characters
Some code points in UCS have been assigned to combining characters.
These are similar to the nonspacing accent keys on a typewriter. A
combining character just adds an accent to the previous character. The
most important accented characters have codes of their own in UCS,
however, the combining character mechanism allows us to add accents and
other diacritical marks to any character. The combining characters
always follow the character which they modify. For example, the German
character Umlaut-A ("Latin capital letter A with diaeresis") can either
be represented by the precomposed UCS code 0x00c4, or alternatively as
the combination of a normal "Latin capital letter A" followed by a
"combining diaeresis": 0x0041 0x0308.
Combining characters are essential for instance for encoding the Thai
script or for mathematical typesetting and users of the International
Phonetic Alphabet.
Implementation Levels
As not all systems are expected to support advanced mechanisms like
combining characters, ISO 10646-1 specifies the following three
implementation levels of UCS:
Level 1 Combining characters and Hangul Jamo (a variant encoding of
the Korean script, where a Hangul syllable glyph is coded as a
triplet or pair of vovel/consonant codes) are not supported.
Level 2 In addition to level 1, combining characters are now allowed
for some languages where they are essential (e.g., Thai, Lao,
Hebrew, Arabic, Devanagari, Malayalam, etc.).
Level 3 All UCS characters are supported.
The Unicode 3.0 Standard published by the Unicode Consortium contains
exactly the UCS Basic Multilingual Plane at implementation level 3, as
described in ISO 10646-1:2000. Unicode 3.1 added the supplemental
planes of ISO 10646-2. The Unicode standard and technical reports
published by the Unicode Consortium provide much additional information
on the semantics and recommended usages of various characters. They
provide guidelines and algorithms for editing, sorting, comparing,
normalizing, converting and displaying Unicode strings.
Unicode Under Linux
Under GNU/Linux, the C type wchar_t is a signed 32-bit integer type.
Its values are always interpreted by the C library as UCS code values
(in all locales), a convention that is signaled by the GNU C library to
applications by defining the constant __STDC_ISO_10646__ as specified
in the ISO C99 standard.
UCS/Unicode can be used just like ASCII in input/output streams,
terminal communication, plaintext files, filenames, and environment
variables in the ASCII compatible UTF-8 multibyte encoding. To signal
the use of UTF-8 as the character encoding to all applications, a
suitable locale has to be selected via environment variables (e.g.,
"LANG=en_GB.UTF-8").
The nl_langinfo(CODESET) function returns the name of the selected
encoding. Library functions such as wctomb(3) and mbsrtowcs(3) can be
used to transform the internal wchar_t characters and strings into the
system character encoding and back and wcwidth(3) tells, how many
positions (0–2) the cursor is advanced by the output of a character.
Under Linux, in general only the BMP at implementation level 1 should
be used at the moment. Up to two combining characters per base
character for certain scripts (in particular Thai) are also supported
by some UTF-8 terminal emulators and ISO 10646 fonts (level 2), but in
general precomposed characters should be preferred where available
(Unicode calls this Normalization Form C).
Private Area
In the BMP, the range 0xe000 to 0xf8ff will never be assigned to any
characters by the standard and is reserved for private usage. For the
Linux community, this private area has been subdivided further into the
range 0xe000 to 0xefff which can be used individually by any end-user
and the Linux zone in the range 0xf000 to 0xf8ff where extensions are
coordinated among all Linux users. The registry of the characters
assigned to the Linux zone is currently maintained by H. Peter Anvin
<Peter.Anvin@linux.org>.
Literature
* Information technology — Universal Multiple-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane.
International Standard ISO/IEC 10646-1, International Organization
for Standardization, Geneva, 2000.
This is the official specification of UCS. Available as a PDF file
on CD-ROM from http://www.iso.ch/.
* The Unicode Standard, Version 3.0. The Unicode Consortium, Addison-
Wesley, Reading, MA, 2000, ISBN 0-201-61633-5.
* S. Harbison, G. Steele. C: A Reference Manual. Fourth edition,
Prentice Hall, Englewood Cliffs, 1995, ISBN 0-13-326224-3.
A good reference book about the C programming language. The fourth
edition covers the 1994 Amendment 1 to the ISO C90 standard, which
adds a large number of new C library functions for handling wide and
multibyte character encodings, but it does not yet cover ISO C99,
which improved wide and multibyte character support even further.
* Unicode Technical Reports.
http://www.unicode.org/unicode/reports/
* Markus Kuhn: UTF-8 and Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/~mgk25/unicode.html
Provides subscription information for the linux-utf8 mailing list,
which is the best place to look for advice on using Unicode under
Linux.
* Bruno Haible: Unicode HOWTO.
ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html
BUGS
When this man page was last revised, the GNU C Library support for
UTF-8 locales was mature and XFree86 support was in an advanced state,
but work on making applications (most notably editors) suitable for use
in UTF-8 locales was still fully in progress. Current general UCS
support under Linux usually provides for CJK double-width characters
and sometimes even simple overstriking combining characters, but
usually does not include support for scripts with right-to-left writing
direction or ligature substitution requirements such as Hebrew, Arabic,
or the Indic scripts. These scripts are currently only supported in
certain GUI applications (HTML viewers, word processors) with
sophisticated text rendering engines.
SEE ALSO
setlocale(3), charsets(7), utf-8(7)
COLOPHON
This page is part of release 3.24 of the Linux man-pages project. A
description of the project, and information about reporting bugs, can
be found at http://www.kernel.org/doc/man-pages/.