NAME
regcomp, regerror, regexec, regfree - regular expression matching
SYNOPSIS
#include <regex.h>
int regcomp(regex_t *restrict preg, const char *restrict pattern,
int cflags);
size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);
int regexec(const regex_t *restrict preg, const char *restrict string,
size_t nmatch, regmatch_t pmatch[restrict], int eflags);
void regfree(regex_t *preg);
DESCRIPTION
These functions interpret basic and extended regular expressions as
described in the Base Definitions volume of IEEE Std 1003.1-2001,
Chapter 9, Regular Expressions.
The regex_t structure is defined in <regex.h> and contains at least the
following member:
Member Type Member Name Description
size_t re_nsub Number of parenthesized subexpressions.
The regmatch_t structure is defined in <regex.h> and contains at least
the following members:
Member Type Member Name Description
regoff_t rm_so Byte offset from start of string to
start of substring.
regoff_t rm_eo Byte offset from start of string of the
first character after the end of
substring.
The regcomp() function shall compile the regular expression contained
in the string pointed to by the pattern argument and place the results
in the structure pointed to by preg. The cflags argument is the
bitwise-inclusive OR of zero or more of the following flags, which are
defined in the <regex.h> header:
REG_EXTENDED
Use Extended Regular Expressions.
REG_ICASE
Ignore case in match. (See the Base Definitions volume of
IEEE Std 1003.1-2001, Chapter 9, Regular Expressions.)
REG_NOSUB
Report only success/fail in regexec().
REG_NEWLINE
Change the handling of <newline>s, as described in the text.
The default regular expression type for pattern is a Basic Regular
Expression. The application can specify Extended Regular Expressions
using the REG_EXTENDED cflags flag.
If the REG_NOSUB flag was not set in cflags, then regcomp() shall set
re_nsub to the number of parenthesized subexpressions (delimited by
"\(\)" in basic regular expressions or "()" in extended regular
expressions) found in pattern.
The regexec() function compares the null-terminated string specified by
string with the compiled regular expression preg initialized by a
previous call to regcomp(). If it finds a match, regexec() shall
return 0; otherwise, it shall return non-zero indicating either no
match or an error. The eflags argument is the bitwise-inclusive OR of
zero or more of the following flags, which are defined in the <regex.h>
header:
REG_NOTBOL
The first character of the string pointed to by string is not
the beginning of the line. Therefore, the circumflex character (
’^’ ), when taken as a special character, shall not match the
beginning of string.
REG_NOTEOL
The last character of the string pointed to by string is not the
end of the line. Therefore, the dollar sign ( ’$’ ), when taken
as a special character, shall not match the end of string.
If nmatch is 0 or REG_NOSUB was set in the cflags argument to
regcomp(), then regexec() shall ignore the pmatch argument. Otherwise,
the application shall ensure that the pmatch argument points to an
array with at least nmatch elements, and regexec() shall fill in the
elements of that array with offsets of the substrings of string that
correspond to the parenthesized subexpressions of pattern: pmatch[ i].
rm_so shall be the byte offset of the beginning and pmatch[ i]. rm_eo
shall be one greater than the byte offset of the end of substring i.
(Subexpression i begins at the ith matched open parenthesis, counting
from 1.) Offsets in pmatch[0] identify the substring that corresponds
to the entire regular expression. Unused elements of pmatch up to
pmatch[ nmatch-1] shall be filled with -1. If there are more than
nmatch subexpressions in pattern ( pattern itself counts as a
subexpression), then regexec() shall still do the match, but shall
record only the first nmatch substrings.
When matching a basic or extended regular expression, any given
parenthesized subexpression of pattern might participate in the match
of several different substrings of string, or it might not match any
substring even though the pattern as a whole did match. The following
rules shall be used to determine which substrings to report in pmatch
when matching regular expressions:
1. If subexpression i in a regular expression is not contained within
another subexpression, and it participated in the match several
times, then the byte offsets in pmatch[ i] shall delimit the last
such match.
2. If subexpression i is not contained within another subexpression,
and it did not participate in an otherwise successful match, the
byte offsets in pmatch[ i] shall be -1. A subexpression does not
participate in the match when: ’*’ or "\{\}" appears immediately
after the subexpression in a basic regular expression, or ’*’ , ’?’
, or "{}" appears immediately after the subexpression in an
extended regular expression, and the subexpression did not match
(matched 0 times)
or: ’|’ is used in an extended regular expression to select this
subexpression or another, and the other subexpression matched.
3. If subexpression i is contained within another subexpression j, and
i is not contained within any other subexpression that is contained
within j, and a match of subexpression j is reported in pmatch[ j],
then the match or non-match of subexpression i reported in pmatch[
i] shall be as described in 1. and 2. above, but within the
substring reported in pmatch[ j] rather than the whole string. The
offsets in pmatch[ i] are still relative to the start of string.
4. If subexpression i is contained in subexpression j, and the byte
offsets in pmatch[ j] are -1, then the pointers in pmatch[ i] shall
also be -1.
5. If subexpression i matched a zero-length string, then both byte
offsets in pmatch[ i] shall be the byte offset of the character or
null terminator immediately following the zero-length string.
If, when regexec() is called, the locale is different from when the
regular expression was compiled, the result is undefined.
If REG_NEWLINE is not set in cflags, then a <newline> in pattern or
string shall be treated as an ordinary character. If REG_NEWLINE is
set, then <newline> shall be treated as an ordinary character except as
follows:
1. A <newline> in string shall not be matched by a period outside a
bracket expression or by any form of a non-matching list (see the
Base Definitions volume of IEEE Std 1003.1-2001, Chapter 9, Regular
Expressions).
2. A circumflex ( ’^’ ) in pattern, when used to specify expression
anchoring (see the Base Definitions volume of IEEE Std 1003.1-2001,
Section 9.3.8, BRE Expression Anchoring), shall match the zero-
length string immediately after a <newline> in string, regardless
of the setting of REG_NOTBOL.
3. A dollar sign ( ’$’ ) in pattern, when used to specify expression
anchoring, shall match the zero-length string immediately before a
<newline> in string, regardless of the setting of REG_NOTEOL.
The regfree() function frees any memory allocated by regcomp()
associated with preg.
The following constants are defined as error return values:
REG_NOMATCH
regexec() failed to match.
REG_BADPAT
Invalid regular expression.
REG_ECOLLATE
Invalid collating element referenced.
REG_ECTYPE
Invalid character class type referenced.
REG_EESCAPE
Trailing ’\’ in pattern.
REG_ESUBREG
Number in "\digit" invalid or in error.
REG_EBRACK
"[]" imbalance.
REG_EPAREN
"\(\)" or "()" imbalance.
REG_EBRACE
"\{\}" imbalance.
REG_BADBR
Content of "\{\}" invalid: not a number, number too large, more
than two numbers, first larger than second.
REG_ERANGE
Invalid endpoint in range expression.
REG_ESPACE
Out of memory.
REG_BADRPT
’?’ , ’*’ , or ’+’ not preceded by valid regular expression.
The regerror() function provides a mapping from error codes returned by
regcomp() and regexec() to unspecified printable strings. It generates
a string corresponding to the value of the errcode argument, which the
application shall ensure is the last non-zero value returned by
regcomp() or regexec() with the given value of preg. If errcode is not
such a value, the content of the generated string is unspecified.
If preg is a null pointer, but errcode is a value returned by a
previous call to regexec() or regcomp(), the regerror() still generates
an error string corresponding to the value of errcode, but it might not
be as detailed under some implementations.
If the errbuf_size argument is not 0, regerror() shall place the
generated string into the buffer of size errbuf_size bytes pointed to
by errbuf. If the string (including the terminating null) cannot fit in
the buffer, regerror() shall truncate the string and null-terminate the
result.
If errbuf_size is 0, regerror() shall ignore the errbuf argument, and
return the size of the buffer needed to hold the generated string.
If the preg argument to regexec() or regfree() is not a compiled
regular expression returned by regcomp(), the result is undefined. A
preg is no longer treated as a compiled regular expression after it is
given to regfree().
RETURN VALUE
Upon successful completion, the regcomp() function shall return 0.
Otherwise, it shall return an integer value indicating an error as
described in <regex.h>, and the content of preg is undefined. If a code
is returned, the interpretation shall be as given in <regex.h>.
If regcomp() detects an invalid RE, it may return REG_BADPAT, or it may
return one of the error codes that more precisely describes the error.
Upon successful completion, the regexec() function shall return 0.
Otherwise, it shall return REG_NOMATCH to indicate no match.
Upon successful completion, the regerror() function shall return the
number of bytes needed to hold the entire generated string, including
the null termination. If the return value is greater than errbuf_size,
the string returned in the buffer pointed to by errbuf has been
truncated.
The regfree() function shall not return a value.
ERRORS
No errors are defined.
The following sections are informative.
EXAMPLES
#include <regex.h>
/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* Return 1 for match, 0 for no match.
*/
int
match(const char *string, char *pattern)
{
int status;
regex_t re;
if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0); /* Report error. */
}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {
return(0); /* Report error. */
}
return(1);
}
The following demonstrates how the REG_NOTBOL flag could be used with
regexec() to find all substrings in a line that match a pattern
supplied by a user. (For simplicity of the example, very little error
checking is done.)
(void) regcomp (&re, pattern, 0);
/* This call to regexec() finds the first match on the line. */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* While matches found. */
/* Substring found between pm.rm_so and pm.rm_eo. */
/* This call to regexec() finds the next match. */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);
}
APPLICATION USAGE
An application could use:
regerror(code,preg,(char *)NULL,(size_t)0)
to find out how big a buffer is needed for the generated string,
malloc() a buffer to hold the string, and then call regerror() again to
get the string. Alternatively, it could allocate a fixed, static buffer
that is big enough to hold most strings, and then use malloc() to
allocate a larger buffer if it finds that this is too small.
To match a pattern as described in the Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.13, Pattern Matching Notation, use the
fnmatch() function.
RATIONALE
The regexec() function must fill in all nmatch elements of pmatch,
where nmatch and pmatch are supplied by the application, even if some
elements of pmatch do not correspond to subexpressions in pattern. The
application writer should note that there is probably no reason for
using a value of nmatch that is larger than preg-> re_nsub+1.
The REG_NEWLINE flag supports a use of RE matching that is needed in
some applications like text editors. In such applications, the user
supplies an RE asking the application to find a line that matches the
given expression. An anchor in such an RE anchors at the beginning or
end of any line. Such an application can pass a sequence of
<newline>-separated lines to regexec() as a single long string and
specify REG_NEWLINE to regcomp() to get the desired behavior. The
application must ensure that there are no explicit <newline>s in
pattern if it wants to ensure that any match occurs entirely within a
single line.
The REG_NEWLINE flag affects the behavior of regexec(), but it is in
the cflags parameter to regcomp() to allow flexibility of
implementation. Some implementations will want to generate the same
compiled RE in regcomp() regardless of the setting of REG_NEWLINE and
have regexec() handle anchors differently based on the setting of the
flag. Other implementations will generate different compiled REs based
on the REG_NEWLINE.
The REG_ICASE flag supports the operations taken by the grep -i option
and the historical implementations of ex and vi. Including this flag
will make it easier for application code to be written that does the
same thing as these utilities.
The substrings reported in pmatch[] are defined using offsets from the
start of the string rather than pointers. Since this is a new
interface, there should be no impact on historical implementations or
applications, and offsets should be just as easy to use as pointers.
The change to offsets was made to facilitate future extensions in which
the string to be searched is presented to regexec() in blocks, allowing
a string to be searched that is not all in memory at once.
The type regoff_t is used for the elements of pmatch[] to ensure that
the application can represent either the largest possible array in
memory (important for an application conforming to the Shell and
Utilities volume of IEEE Std 1003.1-2001) or the largest possible file
(important for an application using the extension where a file is
searched in chunks).
The standard developers rejected the inclusion of a regsub() function
that would be used to do substitutions for a matched RE. While such a
routine would be useful to some applications, its utility would be much
more limited than the matching function described here. Both RE parsing
and substitution are possible to implement without support other than
that required by the ISO C standard, but matching is much more complex
than substituting. The only difficult part of substitution, given the
information supplied by regexec(), is finding the next character in a
string when there can be multi-byte characters. That is a much larger
issue, and one that needs a more general solution.
The errno variable has not been used for error returns to avoid filling
the errno name space for this feature.
The interface is defined so that the matched substrings rm_sp and rm_ep
are in a separate regmatch_t structure instead of in regex_t. This
allows a single compiled RE to be used simultaneously in several
contexts; in main() and a signal handler, perhaps, or in multiple
threads of lightweight processes. (The preg argument to regexec() is
declared with type const, so the implementation is not permitted to use
the structure to store intermediate results.) It also allows an
application to request an arbitrary number of substrings from an RE.
The number of subexpressions in the RE is reported in re_nsub in preg.
With this change to regexec(), consideration was given to dropping the
REG_NOSUB flag since the user can now specify this with a zero nmatch
argument to regexec(). However, keeping REG_NOSUB allows an
implementation to use a different (perhaps more efficient) algorithm if
it knows in regcomp() that no subexpressions need be reported. The
implementation is only required to fill in pmatch if nmatch is not zero
and if REG_NOSUB is not specified. Note that the size_t type, as
defined in the ISO C standard, is unsigned, so the description of
regexec() does not need to address negative values of nmatch.
REG_NOTBOL was added to allow an application to do repeated searches
for the same pattern in a line. If the pattern contains a circumflex
character that should match the beginning of a line, then the pattern
should only match when matched against the beginning of the line.
Without the REG_NOTBOL flag, the application could rewrite the
expression for subsequent matches, but in the general case this would
require parsing the expression. The need for REG_NOTEOL is not as
clear; it was added for symmetry.
The addition of the regerror() function addresses the historical need
for conforming application programs to have access to error information
more than "Function failed to compile/match your RE for unknown
reasons".
This interface provides for two different methods of dealing with error
conditions. The specific error codes (REG_EBRACE, for example), defined
in <regex.h>, allow an application to recover from an error if it is so
able. Many applications, especially those that use patterns supplied by
a user, will not try to deal with specific error cases, but will just
use regerror() to obtain a human-readable error message to present to
the user.
The regerror() function uses a scheme similar to confstr() to deal with
the problem of allocating memory to hold the generated string. The
scheme used by strerror() in the ISO C standard was considered
unacceptable since it creates difficulties for multi-threaded
applications.
The preg argument is provided to regerror() to allow an implementation
to generate a more descriptive message than would be possible with
errcode alone. An implementation might, for example, save the character
offset of the offending character of the pattern in a field of preg,
and then include that in the generated message string. The
implementation may also ignore preg.
A REG_FILENAME flag was considered, but omitted. This flag caused
regexec() to match patterns as described in the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section 2.13, Pattern Matching Notation
instead of REs. This service is now provided by the fnmatch() function.
Notice that there is a difference in philosophy between the
ISO POSIX-2:1993 standard and IEEE Std 1003.1-2001 in how to handle a
"bad" regular expression. The ISO POSIX-2:1993 standard says that many
bad constructs "produce undefined results", or that "the interpretation
is undefined". IEEE Std 1003.1-2001, however, says that the
interpretation of such REs is unspecified. The term "undefined" means
that the action by the application is an error, of similar severity to
passing a bad pointer to a function.
The regcomp() and regexec() functions are required to accept any null-
terminated string as the pattern argument. If the meaning of the string
is "undefined", the behavior of the function is "unspecified".
IEEE Std 1003.1-2001 does not specify how the functions will interpret
the pattern; they might return error codes, or they might do pattern
matching in some completely unexpected way, but they should not do
something like abort the process.
FUTURE DIRECTIONS
None.
SEE ALSO
fnmatch() , glob() , Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.13, Pattern Matching Notation, Base
Definitions volume of IEEE Std 1003.1-2001, Chapter 9, Regular
Expressions, <regex.h>, <sys/types.h>
COPYRIGHT
Portions of this text are reprinted and reproduced in electronic form
from IEEE Std 1003.1, 2003 Edition, Standard for Information Technology
-- Portable Operating System Interface (POSIX), The Open Group Base
Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of
Electrical and Electronics Engineers, Inc and The Open Group. In the
event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard
is the referee document. The original Standard can be obtained online
at http://www.opengroup.org/unix/online.html .