Man Linux: Main Page and Category List

NAME

       PSLASET  -  initialize  an  M-by-N distributed matrix sub( A ) denoting
       A(IA:IA+M-1,JA:JA+N-1) to  BETA  on  the  diagonal  and  ALPHA  on  the
       offdiagonals

SYNOPSIS

       SUBROUTINE PSLASET( UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA )

           CHARACTER       UPLO

           INTEGER         IA, JA, M, N

           REAL            ALPHA, BETA

           INTEGER         DESCA( * )

           REAL            A( * )

PURPOSE

       PSLASET  initializes  an  M-by-N  distributed  matrix sub( A ) denoting
       A(IA:IA+M-1,JA:JA+N-1) to  BETA  on  the  diagonal  and  ALPHA  on  the
       offdiagonals.

       Notes
       =====

       Each  global  data  object  is  described  by an associated description
       vector.  This vector stores the information required to  establish  the
       mapping  between  an  object  element and its corresponding process and
       memory location.

       Let A be a generic term for any 2D block  cyclicly  distributed  array.
       Such a global array has an associated description vector DESCA.  In the
       following comments, the character _ should be read as  "of  the  global
       array".

       NOTATION        STORED IN      EXPLANATION
       ---------------  --------------  --------------------------------------
       DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
                                      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                                      the BLACS process grid A is distribu-
                                      ted over. The context itself is glo-
                                      bal, but the handle (the integer
                                      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
                                      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
                                      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
                                      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
                                      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                                      row  of  the  array  A  is  distributed.
       CSRC_A (global) DESCA( CSRC_ ) The process column over which the
                                      first column of the array A is
                                      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
                                      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let  K  be  the  number of rows or columns of a distributed matrix, and
       assume that its process grid has dimension p x q.
       LOCr( K ) denotes the number of elements of  K  that  a  process  would
       receive  if  K  were  distributed  over  the p processes of its process
       column.
       Similarly, LOCc( K ) denotes the number of elements of K that a process
       would receive if K were distributed over the q processes of its process
       row.
       The values of LOCr() and LOCc() may be determined via  a  call  to  the
       ScaLAPACK tool function, NUMROC:
               LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
               LOCc(  N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper
       bound for these quantities may be computed by:
               LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
               LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

       UPLO    (global input) CHARACTER
               Specifies the part of the distributed matrix sub(  A  )  to  be
               set:
               =  ’U’:       Upper  triangular part is set; the strictly lower
               triangular part of sub( A ) is not changed; =  ’L’:       Lower
               triangular  part  is set; the strictly upper triangular part of
               sub( A ) is not changed; Otherwise:  All of the matrix sub( A )
               is set.

       M       (global input) INTEGER
               The  number of rows to be operated on i.e the number of rows of
               the distributed submatrix sub( A ). M >= 0.

       N       (global input) INTEGER
               The number of columns to be  operated  on  i.e  the  number  of
               columns of the distributed submatrix sub( A ). N >= 0.

       ALPHA   (global input) REAL
               The constant to which the offdiagonal elements are to be set.

       BETA    (global input) REAL
               The constant to which the diagonal elements are to be set.

       A       (local output) REAL pointer into the local memory
               to  an  array  of  dimension  (LLD_A,LOCc(JA+N-1)).  This array
               contains the local pieces of the distributed matrix sub( A ) to
               be  set.  On exit, the leading M-by-N submatrix sub( A ) is set
               as follows:

               if UPLO = ’U’, A(IA+i-1,JA+j-1) = ALPHA, 1<=i<=j-1, 1<=j<=N, if
               UPLO  =  ’L’,  A(IA+i-1,JA+j-1)  =  ALPHA,  j+1<=i<=M, 1<=j<=N,
               otherwise,      A(IA+i-1,JA+j-1)  =  ALPHA,  1<=i<=M,  1<=j<=N,
               IA+i.NE.JA+j,  and,  for  all  UPLO,  A(IA+i-1,JA+i-1)  = BETA,
               1<=i<=min(M,N).

       IA      (global input) INTEGER
               The row index in the global array A indicating the first row of
               sub( A ).

       JA      (global input) INTEGER
               The  column  index  in  the global array A indicating the first
               column of sub( A ).

       DESCA   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix A.