Man Linux: Main Page and Category List

NAME

       PCRE - Perl-compatible regular expressions.

SYNOPSIS OF POSIX API


       #include <pcreposix.h>

       int regcomp(regex_t *preg, const char *pattern,
            int cflags);

       int regexec(regex_t *preg, const char *string,
            size_t nmatch, regmatch_t pmatch[], int eflags);

       size_t regerror(int errcode, const regex_t *preg,
            char *errbuf, size_t errbuf_size);

       void regfree(regex_t *preg);

DESCRIPTION


       This  set  of  functions provides a POSIX-style API to the PCRE regular
       expression package. See the pcreapi documentation for a description  of
       PCRE’s native API, which contains much additional functionality.

       The functions described here are just wrapper functions that ultimately
       call  the  PCRE  native  API.  Their  prototypes  are  defined  in  the
       pcreposix.h  header  file,  and  on  Unix systems the library itself is
       called pcreposix.a, so can be accessed by  adding  -lpcreposix  to  the
       command  for  linking  an application that uses them. Because the POSIX
       functions call the native ones, it is also necessary to add -lpcre.

       I have implemented only those POSIX option bits that can be  reasonably
       mapped  to PCRE native options. In addition, the option REG_EXTENDED is
       defined with the value zero. This has no  effect,  but  since  programs
       that  are  written  to  the POSIX interface often use it, this makes it
       easier to slot in PCRE as a replacement library.  Other  POSIX  options
       are not even defined.

       There  are also some other options that are not defined by POSIX. These
       have been added at the request of users who want to make use of certain
       PCRE-specific features via the POSIX calling interface.

       When  PCRE  is  called  via these functions, it is only the API that is
       POSIX-like  in  style.  The  syntax  and  semantics  of   the   regular
       expressions  themselves are still those of Perl, subject to the setting
       of various PCRE options, as  described  below.  "POSIX-like  in  style"
       means  that  the  API  approximates  to the POSIX definition; it is not
       fully POSIX-compatible,  and  in  multi-byte  encoding  domains  it  is
       probably even less compatible.

       The  header for these functions is supplied as pcreposix.h to avoid any
       potential clash with other POSIX  libraries.  It  can,  of  course,  be
       renamed or aliased as regex.h, which is the "correct" name. It provides
       two  structure  types,  regex_t  for  compiled  internal   forms,   and
       regmatch_t  for  returning  captured  substrings.  It also defines some
       constants whose names start with "REG_"; these  are  used  for  setting
       options and identifying error codes.

COMPILING A PATTERN


       The  function regcomp() is called to compile a pattern into an internal
       form. The pattern is a C string terminated by a  binary  zero,  and  is
       passed  in  the  argument  pattern. The preg argument is a pointer to a
       regex_t structure that is used as a base for storing information  about
       the compiled regular expression.

       The argument cflags is either zero, or contains one or more of the bits
       defined by the following macros:

         REG_DOTALL

       The PCRE_DOTALL option is set when the regular expression is passed for
       compilation to the native function. Note that REG_DOTALL is not part of
       the POSIX standard.

         REG_ICASE

       The PCRE_CASELESS option is set when the regular expression  is  passed
       for compilation to the native function.

         REG_NEWLINE

       The  PCRE_MULTILINE option is set when the regular expression is passed
       for compilation to the native function. Note that this does  not  mimic
       the   defined  POSIX  behaviour  for  REG_NEWLINE  (see  the  following
       section).

         REG_NOSUB

       The PCRE_NO_AUTO_CAPTURE option is set when the regular  expression  is
       passed  for  compilation  to  the  native function. In addition, when a
       pattern that is compiled with this flag  is  passed  to  regexec()  for
       matching,  the nmatch and pmatch arguments are ignored, and no captured
       strings are returned.

         REG_UNGREEDY

       The PCRE_UNGREEDY option is set when the regular expression  is  passed
       for  compilation  to the native function. Note that REG_UNGREEDY is not
       part of the POSIX standard.

         REG_UTF8

       The PCRE_UTF8 option is set when the regular expression is  passed  for
       compilation  to the native function. This causes the pattern itself and
       all data strings used for matching it to be treated as  UTF-8  strings.
       Note that REG_UTF8 is not part of the POSIX standard.

       In  the  absence  of  these  flags, no options are passed to the native
       function.  This means the the  regex  is  compiled  with  PCRE  default
       semantics.  In particular, the way it handles newline characters in the
       subject string is the Perl way, not the POSIX way.  Note  that  setting
       PCRE_MULTILINE  has only some of the effects specified for REG_NEWLINE.
       It does not affect the way newlines are matched by . (they are not)  or
       by a negative class such as [^a] (they are).

       The  yield of regcomp() is zero on success, and non-zero otherwise. The
       preg structure is filled in on success, and one member of the structure
       is  public: re_nsub contains the number of capturing subpatterns in the
       regular expression. Various error codes are defined in the header file.

       NOTE:  If  the  yield of regcomp() is non-zero, you must not attempt to
       use the contents of the preg structure. If, for example, you pass it to
       regexec(), the result is undefined and your program is likely to crash.

MATCHING NEWLINE CHARACTERS


       This area is not simple, because POSIX and Perl take different views of
       things.   It  is  not possible to get PCRE to obey POSIX semantics, but
       then PCRE was never intended to be a POSIX engine. The following  table
       lists  the  different  possibilities for matching newline characters in
       PCRE:

                                 Default   Change with

         . matches newline          no     PCRE_DOTALL
         newline matches [^a]       yes    not changeable
         $ matches \n at end        yes    PCRE_DOLLARENDONLY
         $ matches \n in middle     no     PCRE_MULTILINE
         ^ matches \n in middle     no     PCRE_MULTILINE

       This is the equivalent table for POSIX:

                                 Default   Change with

         . matches newline          yes    REG_NEWLINE
         newline matches [^a]       yes    REG_NEWLINE
         $ matches \n at end        no     REG_NEWLINE
         $ matches \n in middle     no     REG_NEWLINE
         ^ matches \n in middle     no     REG_NEWLINE

       PCRE’s behaviour is the  same  as  Perl’s,  except  that  there  is  no
       equivalent  for  PCRE_DOLLAR_ENDONLY  in  Perl.  In both PCRE and Perl,
       there is no way to stop newline from matching [^a].

       The  default  POSIX  newline  handling  can  be  obtained  by   setting
       PCRE_DOTALL  and  PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE
       behave exactly as for the REG_NEWLINE action.

MATCHING A PATTERN


       The function regexec() is called  to  match  a  compiled  pattern  preg
       against  a  given string, which is by default terminated by a zero byte
       (but see REG_STARTEND below), subject to the options in  eflags.  These
       can be:

         REG_NOTBOL

       The PCRE_NOTBOL option is set when calling the underlying PCRE matching
       function.

         REG_NOTEMPTY

       The PCRE_NOTEMPTY option  is  set  when  calling  the  underlying  PCRE
       matching  function.  Note  that  REG_NOTEMPTY  is not part of the POSIX
       standard.  However,  setting  this  option  can  give  more  POSIX-like
       behaviour in some situations.

         REG_NOTEOL

       The PCRE_NOTEOL option is set when calling the underlying PCRE matching
       function.

         REG_STARTEND

       The string is considered to start at string +  pmatch[0].rm_so  and  to
       have  a terminating NUL located at string + pmatch[0].rm_eo (there need
       not actually be a NUL at that location), regardless  of  the  value  of
       nmatch.  This  is a BSD extension, compatible with but not specified by
       IEEE Standard 1003.2 (POSIX.2), and should  be  used  with  caution  in
       software intended to be portable to other systems. Note that a non-zero
       rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location
       of the string, not how it is matched.

       If  the pattern was compiled with the REG_NOSUB flag, no data about any
       matched strings  is  returned.  The  nmatch  and  pmatch  arguments  of
       regexec() are ignored.

       If the value of nmatch is zero, or if the value pmatch is NULL, no data
       about any matched strings is returned.

       Otherwise,the portion of the string that  was  matched,  and  also  any
       captured substrings, are returned via the pmatch argument, which points
       to an array of nmatch structures of  type  regmatch_t,  containing  the
       members  rm_so  and  rm_eo.  These  contain  the  offset  to  the first
       character of each substring and the offset to the first character after
       the  end of each substring, respectively. The 0th element of the vector
       relates to the entire portion of string that  was  matched;  subsequent
       elements relate to the capturing subpatterns of the regular expression.
       Unused entries in the array have both structure members set to -1.

       A successful match yields  a  zero  return;  various  error  codes  are
       defined  in  the  header  file,  of which REG_NOMATCH is the "expected"
       failure code.

ERROR MESSAGES


       The regerror() function maps a non-zero errorcode from either regcomp()
       or  regexec()  to  a  printable message. If preg is not NULL, the error
       should have arisen from the use of that structure. A message terminated
       by  a  binary  zero  is  placed  in  errbuf. The length of the message,
       including the zero,  is  limited  to  errbuf_size.  The  yield  of  the
       function is the size of buffer needed to hold the whole message.

MEMORY USAGE


       Compiling  a  regular  expression  causes  memory  to  be allocated and
       associated with the preg structure. The function  regfree()  frees  all
       such  memory,  after  which  preg  may  no longer be used as a compiled
       expression.

AUTHOR


       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

REVISION


       Last updated: 02 September 2009
       Copyright (c) 1997-2009 University of Cambridge.