Man Linux: Main Page and Category List

NAME

       coin_shaders - Shaders in Coin Coin 2.5 added support for shaders. The
       main nodes used are SoShaderProgram, SoVertexShader, SoFragmentShader,
       and SoGeometryShader. A typical scene graph with shaders will look
       something like this:

         Separator {
           ShaderProgram {
             shaderObject [
               VertexShader {
                 sourceProgram ’myvertexshader.glsl’
                 parameter [
                   ShaderParameter1f { name ’myvertexparam’ value 1.0 }
                 ]
               }
               FragmentShader {
                 sourceProgram ’myfragmentshader.glsl’
                 parameter [
                   ShaderParameter1f { name ’myfragmentparam’ value 2.0 }
                 ]
               }
             ]
           }
           Cube { }
         }

       This will render the Cube with the vertex and fragment shaders
       specified in myvertexshader.glsl and myfragmentshader.glsl. Coin also
       supports ARB shaders and Cg shaders (if the Cg library is installed).
       However, we recommend using GLSL since we will focus mostly on support
       this shader language.

       Coin defines some named parameters that can be added by the application
       programmer, and which will be automatically updated by Coin while
       traversing the scene graph.

       · coin_texunit[n]_model - Set to 0 when texturing is disabled, and to
         SoTextureImageElement::Model if there’s a current texture on the
         state for unit n.
       · coin_light_model - Set to 1 for PHONG, 0 for BASE_COLOR lighting.
       Example scene graph that renders per-fragment OpenGL Phong lighting for
       one light source. The shaders assume the first light source is a
       directional light. This is the case if you open the file in a standard
       examiner viewer.
       The iv-file:
         Separator {
           ShaderProgram {
             shaderObject [
               VertexShader {
                 sourceProgram ’perpixel_vertex.glsl’
               }
               FragmentShader {
                 sourceProgram ’perpixel_fragment.glsl’
               }
             ]
           }
           Complexity { value 1.0 }
           Material { diffuseColor 1 0 0 specularColor 1 1 1 shininess 0.9 }
           Sphere { }

           Translation { translation 3 0 0 }
           Material { diffuseColor 0 1 0 specularColor 1 1 1 shininess 0.9 }
           Cone { }

           Translation { translation 3 0 0 }
           Material { diffuseColor 0.8 0.4 0.1 specularColor 1 1 1 shininess 0.9 }
           Cylinder { }
         }

       The vertex shader (perpixel_vertex.glsl):
         varying vec3 ecPosition3;
         varying vec3 fragmentNormal;

         void main(void)
         {
           vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
           ecPosition3 = ecPosition.xyz / ecPosition.w;
           fragmentNormal = normalize(gl_NormalMatrix * gl_Normal);

           gl_Position = ftransform();
           gl_FrontColor = gl_Color;
         }

       The fragment shader (perpixel_fragment.glsl):
         varying vec3 ecPosition3;
         varying vec3 fragmentNormal;

         void DirectionalLight(in int i,
                               in vec3 normal,
                               inout vec4 ambient,
                               inout vec4 diffuse,
                               inout vec4 specular)
         {
           float nDotVP; // normal . light direction
           float nDotHV; // normal . light half vector
           float pf;     // power factor

           nDotVP = max(0.0, dot(normal, normalize(vec3(gl_LightSource[i].position))));
           nDotHV = max(0.0, dot(normal, vec3(gl_LightSource[i].halfVector)));

           if (nDotVP == 0.0)
             pf = 0.0;
           else
             pf = pow(nDotHV, gl_FrontMaterial.shininess);

           ambient += gl_LightSource[i].ambient;
           diffuse += gl_LightSource[i].diffuse * nDotVP;
           specular += gl_LightSource[i].specular * pf;
         }

         void main(void)
         {
           vec3 eye = -normalize(ecPosition3);
           vec4 ambient = vec4(0.0);
           vec4 diffuse = vec4(0.0);
           vec4 specular = vec4(0.0);
           vec3 color;

           DirectionalLight(0, normalize(fragmentNormal), ambient, diffuse, specular);

           color =
             gl_FrontLightModelProduct.sceneColor.rgb +
             ambient.rgb * gl_FrontMaterial.ambient.rgb +
             diffuse.rgb * gl_Color.rgb +
             specular.rgb * gl_FrontMaterial.specular.rgb;

           gl_FragColor = vec4(color, gl_Color.a);
         }