NAME
SbDPMatrix -
The SbDPMatrix class is a 4x4 dimensional representation of a double-
precision matrix.
This class is like the SbMatrix class, but uses double-precision
floating point values for its elements. For more class documentation,
see SbMatrix.
SYNOPSIS
#include <Inventor/SbDPMatrix.h>
Public Member Functions
SbDPMatrix (void)
SbDPMatrix (const double a11, const double a12, const double a13, const
double a14, const double a21, const double a22, const double a23,
const double a24, const double a31, const double a32, const double
a33, const double a34, const double a41, const double a42, const
double a43, const double a44)
SbDPMatrix (const SbDPMat &matrix)
SbDPMatrix (const SbDPMat *matrix)
SbDPMatrix (const SbMatrix &matrix)
~SbDPMatrix (void)
SbDPMatrix & operator= (const SbDPMat &m)
operator double * (void)
SbDPMatrix & operator= (const SbDPMatrix &m)
void setValue (const SbDPMat &m)
const SbDPMat & getValue (void) const
void makeIdentity (void)
void setRotate (const SbDPRotation &q)
SbDPMatrix inverse (void) const
double det3 (int r1, int r2, int r3, int c1, int c2, int c3) const
double det3 (void) const
double det4 (void) const
SbBool equals (const SbDPMatrix &m, double tolerance) const
operator SbDPMat & (void)
double * operator[] (int i)
const double * operator[] (int i) const
SbDPMatrix & operator= (const SbDPRotation &q)
SbDPMatrix & operator*= (const SbDPMatrix &m)
void getValue (SbDPMat &m) const
void setScale (const double s)
void setScale (const SbVec3d &s)
void setTranslate (const SbVec3d &t)
void setTransform (const SbVec3d &t, const SbDPRotation &r, const
SbVec3d &s)
void setTransform (const SbVec3d &t, const SbDPRotation &r, const
SbVec3d &s, const SbDPRotation &so)
void setTransform (const SbVec3d &translation, const SbDPRotation
&rotation, const SbVec3d &scaleFactor, const SbDPRotation
&scaleOrientation, const SbVec3d ¢er)
void getTransform (SbVec3d &t, SbDPRotation &r, SbVec3d &s,
SbDPRotation &so) const
void getTransform (SbVec3d &translation, SbDPRotation &rotation,
SbVec3d &scaleFactor, SbDPRotation &scaleOrientation, const SbVec3d
¢er) const
SbBool factor (SbDPMatrix &r, SbVec3d &s, SbDPMatrix &u, SbVec3d &t,
SbDPMatrix &proj)
SbBool LUDecomposition (int index[4], double &d)
void LUBackSubstitution (int index[4], double b[4]) const
SbDPMatrix transpose (void) const
SbDPMatrix & multRight (const SbDPMatrix &m)
SbDPMatrix & multLeft (const SbDPMatrix &m)
void multMatrixVec (const SbVec3d &src, SbVec3d &dst) const
void multVecMatrix (const SbVec3d &src, SbVec3d &dst) const
void multDirMatrix (const SbVec3d &src, SbVec3d &dst) const
void multLineMatrix (const SbDPLine &src, SbDPLine &dst) const
void multVecMatrix (const SbVec4d &src, SbVec4d &dst) const
void print (FILE *fp) const
Static Public Member Functions
static SbDPMatrix identity (void)
Friends
SbDPMatrix operator* (const SbDPMatrix &m1, const SbDPMatrix &m2)
int operator== (const SbDPMatrix &m1, const SbDPMatrix &m2)
int operator!= (const SbDPMatrix &m1, const SbDPMatrix &m2)
Detailed Description
The SbDPMatrix class is a 4x4 dimensional representation of a double-
precision matrix.
This class is like the SbMatrix class, but uses double-precision
floating point values for its elements. For more class documentation,
see SbMatrix.
Since:
Coin 2.0.
Constructor & Destructor Documentation
SbDPMatrix::SbDPMatrix (void) The default constructor does nothing. The
matrix will be uninitialized.
SbDPMatrix::SbDPMatrix (const double a11, const double a12, const double
a13, const double a14, const double a21, const double a22, const double
a23, const double a24, const double a31, const double a32, const double
a33, const double a34, const double a41, const double a42, const double
a43, const double a44) Constructs a matrix instance with the given
initial elements.
SbDPMatrix::SbDPMatrix (const SbDPMat & matrixref) Constructs a matrix
instance with the initial elements from the matrix argument.
SbDPMatrix::SbDPMatrix (const SbDPMat * matrixptr) This constructor is
courtesy of the Microsoft Visual C++ compiler.
SbDPMatrix::SbDPMatrix (const SbMatrix & matrixref) This constructor
converts a single-precision matrix to a double-precision matrix.
SbDPMatrix::~SbDPMatrix (void) Default destructor does nothing.
Member Function Documentation
SbDPMatrix & SbDPMatrix::operator= (const SbDPMat & m) Assignment operator.
Copies the elements from m to the matrix.
SbDPMatrix::operator double * (void) Return pointer to the matrix’ 4x4
double array.
SbDPMatrix & SbDPMatrix::operator= (const SbDPMatrix & m) Assignment
operator. Copies the elements from m to the matrix.
void SbDPMatrix::setValue (const SbDPMat & m) Copies the elements from m
into the matrix.
See also:
getValue().
const SbDPMat & SbDPMatrix::getValue (void) const Returns a pointer to the
2 dimensional double array with the matrix elements.
See also:
setValue().
void SbDPMatrix::makeIdentity (void) Set the matrix to be the identity
matrix.
See also:
identity().
void SbDPMatrix::setRotate (const SbDPRotation & q) Set matrix to be a
rotation matrix with the given rotation.
See also:
setTranslate(), setScale().
SbDPMatrix SbDPMatrix::inverse (void) const Return a new matrix which is
the inverse matrix of this.
The user is responsible for checking that this is a valid operation to
execute, by first making sure that the result of SbDPMatrix::det4() is
not equal to zero.
double SbDPMatrix::det3 (int r1, int r2, int r3, int c1, int c2, int c3)
const Returns the determinant of the 3x3 submatrix specified by the row
and column indices.
double SbDPMatrix::det3 (void) const Returns the determinant of the upper
left 3x3 submatrix.
double SbDPMatrix::det4 (void) const Returns the determinant of the matrix.
SbBool SbDPMatrix::equals (const SbDPMatrix & m, double tolerance) const
Check if the m matrix is equal to this one, within the given tolerance
value. The tolerance value is applied in the comparison on a component
by component basis.
SbDPMatrix::operator SbDPMat & (void) Return pointer to the matrix’ 4x4
double array.
double * SbDPMatrix::operator[] (int i) Returns pointer to the 4 element
array representing a matrix row. i should be within [0, 3].
See also:
getValue(), setValue().
const double * SbDPMatrix::operator[] (int i) const Returns pointer to the
4 element array representing a matrix row. i should be within [0, 3].
See also:
getValue(), setValue().
SbDPMatrix & SbDPMatrix::operator= (const SbDPRotation & q) Set matrix to
be a rotation matrix with the given rotation.
See also:
setRotate().
SbDPMatrix & SbDPMatrix::operator*= (const SbDPMatrix & m) Right-multiply
with the m matrix.
See also:
multRight().
void SbDPMatrix::getValue (SbDPMat & m) const Return matrix components in
the SbDPMat structure.
See also:
setValue().
SbDPMatrix SbDPMatrix::identity (void) [static] Return the identity matrix.
See also:
makeIdentity().
void SbDPMatrix::setScale (const double s) Set matrix to be a pure scaling
matrix. Scale factors are specified by s.
See also:
setRotate(), setTranslate().
void SbDPMatrix::setScale (const SbVec3d & s) Set matrix to be a pure
scaling matrix. Scale factors in x, y and z is specified by the s
vector.
See also:
setRotate(), setTranslate().
void SbDPMatrix::setTranslate (const SbVec3d & t) Make this matrix into a
pure translation matrix (no scale or rotation components) with the
given vector as the translation.
See also:
setRotate(), setScale().
void SbDPMatrix::setTransform (const SbVec3d & t, const SbDPRotation & r,
const SbVec3d & s) Set translation, rotation and scaling all at once.
The resulting matrix gets calculated like this:
M = S * R * T
where S, R and T is scaling, rotation and translation matrices.
See also:
setTranslate(), setRotate(), setScale() and getTransform().
void SbDPMatrix::setTransform (const SbVec3d & t, const SbDPRotation & r,
const SbVec3d & s, const SbDPRotation & so) Set translation, rotation
and scaling all at once with a specified scale orientation. The
resulting matrix gets calculated like this:
M = Ro-¹ * S * Ro * R * T
where Ro is the scale orientation, and S, R and T is scaling, rotation
and translation.
See also:
setTranslate(), setRotate(), setScale() and getTransform().
void SbDPMatrix::setTransform (const SbVec3d & translation, const
SbDPRotation & rotation, const SbVec3d & scaleFactor, const
SbDPRotation & scaleOrientation, const SbVec3d & center) Set
translation, rotation and scaling all at once with a specified scale
orientation and center point. The resulting matrix gets calculated like
this:
M = -Tc * Ro-¹ * S * Ro * R * T * Tc
where Tc is the center point, Ro the scale orientation, S, R and T is
scaling, rotation and translation.
See also:
setTranslate(), setRotate(), setScale() and getTransform().
void SbDPMatrix::getTransform (SbVec3d & t, SbDPRotation & r, SbVec3d & s,
SbDPRotation & so) const Factor the matrix back into its translation,
rotation, scale and scaleorientation components.
See also:
factor()
void SbDPMatrix::getTransform (SbVec3d & translation, SbDPRotation &
rotation, SbVec3d & scaleFactor, SbDPRotation & scaleOrientation, const
SbVec3d & center) const Factor the matrix back into its translation,
rotation, scaleFactor and scaleorientation components. Will eliminate
the center variable from the matrix.
See also:
factor()
SbBool SbDPMatrix::LUDecomposition (int index[4], double & d) This function
produces a permuted LU decomposition of the matrix. It uses the common
single-row-pivoting strategy.
FALSE is returned if the matrix is singular, which it never is, because
of small adjustment values inserted if a singularity is found (as Open
Inventor does too).
The parity argument is always set to 1.0 or -1.0. Don’t really know
what it’s for, so it’s not checked for correctness.
The index[] argument returns the permutation that was done on the
matrix to LU-decompose it. index[i] is the row that row i was swapped
with at step i in the decomposition, so index[] is not the actual
permutation of the row indexes!
BUGS: The function does not produce results that are numerically
identical with those produced by Open Inventor for the same matrices,
because the pivoting strategy in OI was never fully understood.
See also:
SbDPMatrix::LUBackSubstitution
void SbDPMatrix::LUBackSubstitution (int index[4], double b[4]) const This
function does a solve on the ’Ax = b’ system, given that the matrix is
LU-decomposed in advance. First, a forward substitution is done on the
lower system (Ly = b), and then a backwards substitution is done on the
upper triangular system (Ux = y).
The index[] argument is the one returned from
SbDPMatrix::LUDecomposition(), so see that function for an explanation.
The b[] argument must contain the b vector in ’Ax = b’ when calling the
function. After the function has solved the system, the b[] vector
contains the x vector.
BUGS: As is done by Open Inventor, unsolvable x values will not return
NaN but 0.
SbDPMatrix SbDPMatrix::transpose (void) const Returns the transpose of this
matrix.
SbDPMatrix & SbDPMatrix::multRight (const SbDPMatrix & m) Let this matrix
be right-multiplied by m. Returns reference to self.
See also:
multLeft()
SbDPMatrix & SbDPMatrix::multLeft (const SbDPMatrix & m) Let this matrix be
left-multiplied by m. Returns reference to self.
See also:
multRight()
void SbDPMatrix::multMatrixVec (const SbVec3d & src, SbVec3d & dst) const
Multiply src vector with this matrix and return the result in dst.
Multiplication is done with the vector on the right side of the
expression, i.e. dst = M * src.
See also:
multVecMatrix(), multDirMatrix() and multLineMatrix().
void SbDPMatrix::multVecMatrix (const SbVec3d & src, SbVec3d & dst) const
Multiply src vector with this matrix and return the result in dst.
Multiplication is done with the vector on the left side of the
expression, i.e. dst = src * M.
It is safe to let src and be the same SbVec3d instance.
See also:
multMatrixVec(), multDirMatrix() and multLineMatrix().
void SbDPMatrix::multDirMatrix (const SbVec3d & src, SbVec3d & dst) const
Multiplies src by the matrix. src is assumed to be a direction vector,
and the translation components of the matrix are therefore ignored.
Multiplication is done with the vector on the left side of the
expression, i.e. dst = src * M.
See also:
multVecMatrix(), multMatrixVec() and multLineMatrix().
void SbDPMatrix::multLineMatrix (const SbDPLine & src, SbDPLine & dst)
const Multiplies line point with the full matrix and multiplies the
line direction with the matrix without the translation components.
See also:
multVecMatrix(), multMatrixVec() and multDirMatrix().
void SbDPMatrix::multVecMatrix (const SbVec4d & src, SbVec4d & dst) const
This is an overloaded member function, provided for convenience. It
differs from the above function only in what argument(s) it accepts.
void SbDPMatrix::print (FILE * fp) const Write out the matrix contents to
the given file.
Friends And Related Function Documentation
SbDPMatrix operator* (const SbDPMatrix & m1, const SbDPMatrix & m2)
[friend] Multiplies matrix m1 with matrix m2 and returns the resultant
matrix.
int operator== (const SbDPMatrix & m1, const SbDPMatrix & m2) [friend]
Compare matrices to see if they are equal. For two matrices to be
equal, all their individual elements must be equal.
See also:
equals().
int operator!= (const SbDPMatrix & m1, const SbDPMatrix & m2) [friend]
Compare matrices to see if they are not equal. For two matrices to not
be equal, it is enough that at least one of their elements are unequal.
See also:
equals().
Author
Generated automatically by Doxygen for Coin from the source code.