Man Linux: Main Page and Category List

NAME

       vpIdentity3,     vpIdentity4,     vpNormalize3,    vpMatrixVectorMult4,
       vpMatrixMult4,    vpCrossProduct,     vpSolveSystem4,     vpSetVector3,
       vpSetVector4 - linear algebra routines

SYNOPSIS

       #include <volpack.h>

       void
       vpIdentity3(m_dst)
           vpMatrix3 m_dst;

       void
       vpIdentity4(m_dst)
           vpMatrix4 m_dst;

       vpResult
       vpNormalize3(v_src1)
           vpVector3 v_src1;

       void
       vpMatrixVectorMult4(v_dst, m_src1, v_src1)
           vpVector4 v_dst;
           vpMatrix4 m_src1;
           vpVector4 v_src1;

       void
       vpMatrixMult4(m_dst, m_src1, m_src2)
           vpVector4 m_dst, m_src1, m_src2;

       void
       vpCrossProduct(v_dst, v_src1, v_src2)
           vpVector3 v_dst, v_src1, v_src2;

       vpResult
       vpSolveSystem4(m_src1, b, count)
           vpMatrix4 m_src1;
           vpVector4 b[];
           int count;

       void
       vpSetVector3(v_dst, x, y, z)
           vpVector3 v_dst;
           double x, y, z;

       void
       vpSetVector4(v_dst, x, y, z, w)
           vpVector4 v_dst;
           double x, y, z, w;

ARGUMENTS

       m_src1, m_src2, m_dst
              Source and destination matrices.

       v_src1, v_src2, v_dst
              Source and destination vectors.

       b      Array of right-hand-side vectors.

       count  Number of right-hand-side vectors.

       x, y, z, w
              Vector components.

DESCRIPTION

       These  routines form a simple linear algebra package used internally by
       VolPack.  The routines are also available as utility routines  for  use
       by the application.

       vpIdentity3 assigns the identity matrix to a 3-by-3 matrix.

       vpIdentity4 assigns the identity matrix to a 4-by-4 matrix.

       vpNormalize3  normalizes  a 3-element vector (so the magnitude is 1.0).
       The result overwrites the source vector.

       vpMatrixVectorMult4 multiplies a 4-by-4 matrix by  a  4-element  column
       vector  and  stores  the  result in the destination vector (v_dst = m .
       v_src).

       vpMatrixMult4 multiplies two 4-by-4 matrices and stores the  result  in
       the destination matrix (m_dst = m_src1 . m_src2).

       vpCrossProduct  computes the cross product of two 3-element vectors and
       stores the result in the destination vector (v_dst = v_src1 x  v_src2).

       vpSolveSystem4  solves the linear system m . x = b for each right-hand-
       side vector in the b array.  The solution vectors overwrite the vectors
       in   the   b  array.   The  solution  is  computed  using  Gauss-Jordan
       elimination with partial pivoting and implicit scaling.

       vpSetVector3 initializes the components of a 3-element vector (v_dst  =
       [x, y, z]).  It is a macro.

       vpSetVector4  initializes the components of a 4-element vector (v_dst =
       [x, y, z, w]).  It is a macro.

ERRORS

       vpNormalize3 and vpSolveSystem4 normally return VP_OK.   The  following
       error return value is possible:

       VPERROR_SINGULAR
              The  vector  is a 0 vector (vpNormalize3 only), or the matrix is
              singular (vpSolveSystem4 only).

SEE ALSO

       VolPack(3)